Деление клеток. Розы дьявола, или Как укротить псориаз? Стимуляция клеточного деления

Деление клеток играет большую роль в процессах онтогенеза. Во-первых, благодаря делению из зиготы, которая соответствует одноклеточной стадии развития, возникает многоклеточный организм. Во-вторых, пролиферация клеток, происходящая после стадии дробления, обеспечивает рост организма. В-третьих, избирательному размножению клеток принадлежит заметная роль в обеспечении морфогенетических процессов. В постнатальном периоде индивидуального развития благодаря клеточному делению осуществляется обновление многих тканей в процессе жизнедеятельности организма, а также восстановление утраченных органов, заживление ран.

Зигота, бластомеры и все соматические клетки организма, за исключением половых клеток, в периоде созревания гаметогенеза делятся митозом. Клеточное деление как таковое является одной из фаз клеточного цикла. От продолжительности интерфазы (G­ 1 + S + G 2 -периоды) зависит частота последовательных делений в ряду клеточных поколений. В свою очередь интерфаза имеет разную продолжительность в зависимости от стадии развития зародыша, локализации и функции клеток.

Так, в периоде дробления эмбриогенеза клетки делятся быстрее, чем в другие, более поздние периоды. Во время гаструляции и органогенеза клетки делятся избирательно в определенных областях зародыша. Замечено, что там, где скорость клеточного деления высокая, происходят и качественные изменения в структуре эмбриональной закладки, т.е. органогенетические процессы сопровождаются активным размножением клеток. Показано, что растяжение клеток при их движении стимулирует клеточное деление. В сформировавшемся организме некоторые клетки, например нейроны, вообще не делятся, в то время как в кроветворной и эпителиальной тканях продолжается активное размножение клеток. Клетки некоторых органов взрослого организма в обычных условиях почти не делятся (печень, почка), но при наличии стимула в виде воздействия гормональных или внутритканевых факторов, часть из них может вступить в деление.

При изучении расположения делящихся клеток в тканях обнаружено, что они группируются гнездами. Само по себе деление клеток не придает эмбриональному зачатку определенной формы, и нередко эти клетки располагаются беспорядочно, но в результате последующего их перераспределения и миграции зачаток приобретает форму. Так, например, в зачатке головного мозга деление клеток сосредоточено исключительно в том слое стенки, который прилежит к полости невроцеля. Затем клетки передвигаются из зоны размножения к наружной стороне пласта и образуют ряд выпячиваний, так называемых мозговых пузырей. Таким образом, клеточное деление в эмбриогенезе носит избирательный и закономерный характер. Об этом же свидетельствует открытая в 60-х годах суточная периодичность количества делящихся клеток в обновляющихся тканях.

В настоящее время известен ряд веществ, которые побуждают клетки к делению, например фитогемагглютинин, некоторые гормоны, а также комплекс веществ, выделяющихся при повреждении тканей. Открыты также и тканеспецифичные ингибиторы клеточного деления - кейлоны. Их действие заключается в подавлении или замедлении скорости деления клеток в тех тканях, которые их вырабатывают. Например, эпидермальные кейлоны действуют только на эпидермис. Будучи тканеспецифичными, кейлоны лишены видовой специфичности. Так, эпидермальный кейлон трески действует и на эпидермис млекопитающего.

За последние годы установлено, что многие структуры зародыша образуются клетками, происходящими от небольшого числа или даже одной клетки. Совокупность клеток, являющихся потомками одной родоначальной клетки, называют клоном. Показано, например, что большие по объему участки центральной нервной системы формируются из определенных клеток раннего зародыша. Пока не ясно, в какой именно срок происходит отбор родоначальных клеток, каков механизм этого отбора. Важным следствием такой селекции является то, что многим клеткам раннего зародыша не суждено участвовать в дальнейшем развитии. В опытах на мышах показано, что организм развивается всего из трех клеток внутренней клеточной массы на стадии, когда бластоциста состоит из 64 клеток, а сама внутренняя клеточная масса содержит примерно 15 клеток. Клональные клетки могут быть причиной мозаицизма, когда большие группы клеток отличаются по набору хромосом или аллельному составу.

По-видимому, количество циклов клеточных делений в ходе онтогенеза генетически предопределено. Вместе с тем известна мутация, изменяющая размеры организма за счет одного дополнительного клеточного деления. Это мутация gt (giant), описанная у Drosophila melanogaster. Она наследуется по рецессивному сцепленному с полом типу. У мутантов gt развитие протекает нормально на протяжении всего эмбрионального периода. Однако в тот момент, когда нормальные особи окукливаются и начинают метаморфоз, особи gt продолжают оставаться в личиночном состоянии еще дополнительно 2-5 сут. За это время у них происходит одно, а может быть, и два дополнительных деления в имагинальных дисках, от количества клеток которых зависит размер будущей взрослой особи. Затем мутанты образуют куколку вдвое крупнее обычной. После метаморфоза несколько удлиненной по времени стадии куколки на свет появляется морфологически нормальная взрослая особь удвоенного размера.

У мышей описан ряд мутаций, обусловливающих снижение пролиферативной активности и следующие за этим фенотипические эффекты. К ним относят, например, мутацию or (ocular retardation), затрагивающую сетчатку глаза начиная с 10-х суток эмбрионального развития и приводящую к микрофтальмии (уменьшению размеров глазных яблок), и мутацию tgia, затрагивающую центральную нервную систему с 5-6-х суток после рождения и приводящую к отставанию роста и атрофии некоторых внутренних органов.

Таким образом, деление клеток является чрезвычайно важным процессом в онтогенетическом развитии. Оно протекает с разной интенсивностью в разное время и в разных местах, носит клональный характер и подвержено генетическому контролю. Все это характеризует клеточное деление как сложнейшую функцию целостного организма, подчиняющегося регулирующим влияниям на различных уровнях: генетическом, тканевом, онтогенетическом.

Против моей болезни — псориаза, но все так же по несколько раз в году появляются красные пятна. Потом они проходят, после двух-трех недель. Через какое-то время все повторяется снова. Расскажите подробнее об этой болезни и о том, как от нее избавиться", — просит читательница MedPulse. Что ответит врач-дерматолог?

Врач-дерматолог, к. м.н., Алексей Левин

С чего начинается псориаз?

Псориаз — хроническое, незаразное заболевание кожи, известное еще в допетровской Руси, где этот дерматоз именовали "розами дьявола". Но не столько из-за высокой опасности для жизни (даже зуд здесь появляется не у всех пациентов, а серьезные осложнения — менее чем в 10% случае), сколько из-за необычайно коварного и упорного характера этого недуга. Кожные "розы" могут вдруг исчезнуть, затем дремать годами и вдруг распуститься вновь. И до сих пор псориаз остается одним из самых загадочных недугов.

Например, уже давно предположили, что это — аутоиммунное заболевание. Но недавно американские ученые открыли два гена, ответственные за деление эпидермальных клеток. Мутации в этих генах, по мнению исследователей, и нарушают порядок клеточного деления, приводя к образованию бляшек. Вот вам еще одна возможная причина — генетическая. Но разве не может быть и другая — инфекционно-вирусная? Шведские ученые выделели ретровирус, которые они считают специфическим возбудителем псориаза. Словом, первопричина болезни пока неизвестна.

В группе наибольшего риска — мнительные, тревожные люди с повышенной эмоциональностью, которые и до начала псориаза в ответ на стресс "срывались" на какие -то заболевания. Поэтому, если говорить о профилактике недуга, то посоветовал бы таким людям проще относится к жизненным проблемам.
В северных странах этот дерматоз встречается в два раза чаще, чем в южных. Такую зависимость связывают с количеством солнечного света. Поэтому еще один совет, как уберечься от псориаза — не переусердствовать в защите от солнечных лучей. Существуют гигиенические правила здорового и безопасного естественного загара. Следуйте им, но и не прячьтесь от солнца как Снегурочка!

Стена высокая, но хилая

При псориазе клетки верхнего эпидермального слоя кожи делятся в 30 быстрее чем в норме. Но созревать не успевают, из-за чего между ними не устанавливается прочных связей. В итоге кожа при псориазе напоминает наспех построенную кирпичную стену, высокую, да непрочную.

Внешне эта "стенка" выглядит как серебристо-белые бляшки. Если их потереть, они соскабливаются легко, как капли стеариновой свечи. Это называют симптомом стеаринового пятна. При дальнейшем поскабливании выделяются точечные капельки крови (симптом кровяной росы). Он обусловлен тем, что эпидермис был соскоблен до поверхностных сосудов кожи. В более глубоких слоях при псориазе происходит воспаление и расширяются сосуды кожи. Этим обусловлен розовый или красный цвет бляшек.

Обычный (бляшечный) псориаз, которому и посвящена наша статья, встречается в большинстве (85%) случаев. Другие формы, вместе взятые, составляют около 15%. Эти разновидности не похожи на обычный псориаз, и в их лечении есть много особенностей. Но у любых видов этого недуга самое частое осложнение — псориатический артрит. Если его не лечить, больной становится инвалидом. Помните об этом, и не реже, чем раз в год покажитесь артрологу или ортопеду.

Впервые услышав диагноз "псориаз", многие люди испытывают потрясение и чувство обреченности. Что ж, их можно понять… Ведь полностью выкорчевать "розы дьявола" медицина еще не умеет. И такие больные везде становятся объектом встревоженных взглядов, поскольку заболевания очевидно для окружающих из-за явных внешних проявлений.

Моим пациентам я даю специальные советы по адаптации к болезни:
— узнайте о ней как можно больше, больше общайтесь с другими больными псориазом,
— не стесняйтесь рассказывать людям о своем заболевании, всегда начиная с того, что оно незаразно,
— найдите врача, с которым у вас установился хороший психологический контакт, лечитесь только у него, и относитесь критично к обещаниям других докторов, а тем более знахарей, полностью избавить вас от псориаза,
— не таитесь от друзей и семьи, успокойте их, объяснив, что псориаз, если его тщательно лечить, не опасен для жизни,

— если Вы не справляетесь с переживаниями по поводу недуга, обратитесь к психотерапевту немедленно, ведь на фоне псориаза развиваются особенно быстро, часто в тяжелейших формах.

Как лечат псориаз

Наиболее употребимые против псориаза — препараты наружного применения, и среди них кортикостероиды. Эти гормональные лекарства, уменьшающие воспаление и подавляющие аутоиммунные реакции в коже, выпускаются в форме мазей, кремов, лосьонов. Кортикостероиды начинают действовать быстро, однако со временем утрачивают эффект. Поэтому они хорошо подходят для кратковременного лечения, а при длительном — обязательно сделайте перерыв на несколько недель. Полезны в борьбе с псориазом и кремы, включающие кальципотриол. По химическому строению — это производное витамина D. Препарат уменьшает скорость деления клеток кожи, нормализует их созревание. Древнейшим средством народной медицины для лечения псориаза является деготь (каменноугольный или березовый), который сейчас входит в состав кремов и шампуней.

Против псориаза применяют также искусственное ультрафиолетовое облучение. В зависимости от длины волны оно делится на УФ-А и УФ-В.

Источники УФ-В-излучения есть только в специализированных центрах для лечения псориаза. Это весьма эффективный, но, увы, дорогой метод.

Не входит в стандарты государственной страховой медицины и ПУВА-терапия, то есть УФ-А в сочетании с приемом фотосенсибилизирующих (увеличивающих чувствительность к солнцу) веществ. Но источники УФ-А более распространены и доступны. Именно УФ-А вызывает загар. Поэтому лампы соляриев и бытовых ультрафиолетовых ламп излучают УФ-А. Однако при псориазе это светолечение становится действенным только при комбинации его с фотосенсибилиризующими лекарствами.

Не забывайте и о возможных побочных эффектах светолечения. Это преждевременное старение кожи и увеличение риска рака кожи.

Из лекарства для приема внутрь и инъекций сильным действитем обладают метотрексат — цитостатический препарат, подавляющий ускоренное деление клеток кожи при псориазе; ацитретин, относящийся к производным витамина А и нормализующий деление клеток кожи; наконец, циклоспорин. Это мощнейший иммунодепрессант, который в частности применяют при пересадке органов для предотвращения их отторжения.

Но у этих препаратов есть целый ряд побочных эффектов, о которых вас должен предупредить врач, причем часть их можно ослабить, однако другие неизбежны.

Нужны разгрузочные дни

Чтобы уменьшить риск обострений псориаза, надо помнить о нескольких правилах.

Принимая душ или ванну, используйте не жесткую губку или мочалку, как и твердое мыло, а только мягкую губку или хлопчатобумажную салфетку. После душа примените смягчающий крем, чтобы кожа была гладкой. Носите легкую, просторную, хлопчатобумажную одежду.

Летом ограничьте время, проводимое в условиях кондиционирования. Если же вы вынуждены находиться в таком помещении, то поставьте около себя емкость с водой.

Защищайте кожу от порезов и повреждений, поскольку они могут стать причиной обострения заболевании, сведите до минимума стрессовые ситуации.

Ваше питание должно быть богатым животными белками, витаминами и исключать слишком жирное, острое, и соленое. Во время обострений нельзя принимать антибиотики, спиртные напитки, а также продукты, способные вызвать аллергию (яйца, копчености, цитрусовые, мед, специи).

Отдайте предпочтение вегетарианским супам, а вот вторые блюда пусть будут мясными (лучше отварная или тушеная крольчатина, курятина, индейка). Также полезны молочные продукты, причем обычной (2,5-3,0%) жирности. Дополните основное меню гречневой, перловой и рисовой кашами. На гарнир лучше всего картофель, фасоль, капуста, но не мучнистые продукты. Сырые овощи и фрукты должны присутствовать на столе ежедневно в течение всего года: яблоки, огурцы, помидоры, морковь, свекла, лук, чеснок свежий, укроп, петрушка.

Очень полезны при псориазе 2 разгрузочных дня в неделю. Меню в такие дни можно разнообразить.

Мясной день: 400 г отварной говядины делят на 5 приемов. Дополнительно 2 раза в день по 100 г гарнира (сырая белокочанная капуста, морковь, огурцы) и 2 стакана отвара шиповника.

Творожно-кефирный день: 400 г творога и 500 г кефира принимаются в течение дня в 5 приемов.

Яблочный день: 1,5 кг яблок, лучше кислых сортов (антоновских) в течение дня. Ничего пить в этот день нельзя.

Кефирный день: 1,5 л кефира в течение дня.

Овощной день: 1,5 кг овощей (за исключением картофеля) лучше в тушеном виде. Дополнительно — 2 стакана отвара шиповника или некрепкого несладкого чая. Овощи делятся на 5 приемов.

Если у вас есть опыт лечения народными способами, пожалуйста, пишите в комментариях ниже.

К концу XIX в. цитологи располагали почти исчерпывающими знаниями о морфологической стороне митоза. Дальнейшее пополнение данных о клеточном делении шло главным образом за счет изучения наиболее примитивных организмов.

Был детально изучен процесс деления у прокариотных (не имеющих оформленного ядра) организмов (бактерий), генетически близкий к мнтозу (М. А. Пешков, 1966), а также митоз у простейших (И. Б. Райков, 1967), где были найдены крайне своеобразные формы этого процесса. У высших организмов морфологическое изучение митоза шло в основном по линии исследования этого процесса в динамике на живых объектах с помощью микрокиносъемки. В этом отношении большое значение имели работы А. Байера и Дж. Моле-Байер (1956, 1961), выполненные на клетках эндосперма некоторых растений.

Однако подавляющее большинство работ XX в. касалось физиологии клеточного деления, и именно в этом разделе проблемы были достигнуты наибольшие успехи. В сущности, неизученным оставался вопрос о причинах и контролирующих факторах митоза. Основоположником этого направления исследований был А. Г. Гурвич.

Уже в монографии «Морфология и биология клетки» (1904) Гурвич высказал мысль, что должны существовать факторы, обусловливающие возникновение митоза, причем они скорее всего связаны с состоянием самой приступающей к делению клетки. Эти пока еще очень общие представления получили развитие в серии дальнейших исследований Гурвича, обобщенных в монографии «Проблема клеточного деления с физиологической точки зрения» (1926). Первым важным теоретическим выводом Гурвича явилось представление о дуализме факторов, вызывающих митоз только при их сочетании. Один из этих факторов (или группа факторов) связан с эндогенными процессами подготовки клетки к делению (фактор возможности или готовности). Другой является экзогенным по отношению к данной клетке (фактор осуществления). Дальнейшие исследования Гурвича были посвящены главным образом изучению второго фактора.

Эксперименты и теоретические рассуждения привели Гурвича в 1923 г. к открытию, что большинство экзотермических реакций как в организме, так и в пробирке сопровождается УФ-излучением. Важнейшим биологическим следствием такого явления оказалась стимуляция клеточных делений, почему эти лучи получили название митогенетических, т. е. вызывающих митозы. В течение последующих лет Гурвичем (1948, 1959) и его сотрудниками было выполнено большое число исследований, посвященных проблеме митогенетического излучения. Стимулирующее влияние излучения было выяснено на самых разнообразных объектах - от бактерий и дрожжевых грибков до зародышей и клеток культуры ткани млекопитающих (А. А. Гурвич, 1968).

В первой четверти XX в. стали накапливаться данные относительно влияния на митоз внешних воздействий - лучистой энергии, различных химических веществ, температуры, концентрации водородных ионов, электрического тока и т. д. Особенно много исследований было выполнено на культуре ткани. В настоящее время установлено, что митотическое деление является следствием длинной цепи причин.

В противоположность цитологии начального периода, которая уделяла основное внимание самому митозу, современная цитология гораздо больше интересуется интерфазой. Пользуясь терминологией Гурвича, можно сказать, что сейчас на первом плане стоит изучение факторов готовно-

сти, обеспечивающих возможность вступления клетки в деление.

Это стало возможным благодаря новым методам исследования, в первую очередь благодаря радиоавтографии.

А. Говард и С. Пелк (1951) предложили весь митотический цикл разбить на четыре периода: постмитотический, или пресинтетический (Gi); синтетический (S), во время которого происходит репликация ДНК; постсинтетический, или премитотический (G2); и, наконец, митоз (М). Накоплен большой фактический материал по продолжительности у самых различных организмов отдельных периодов и всего митотического цикла в целом в норме и при воздействии разнообразных внешних и внутренних факторов - лучистой энергии, вирусов, гормонов и т. д.

Ряд исследований (М. Суонн, 1957, 1958) посвящен энергетике клеточного деления, и хотя многие детали остаются еще невыясненными, стало очевидным, что важная роль принадлежит в этом отношении макро- эргическим соединениям, в частности АТФ. Это вещество не только участвует в подготовке клетки к делению, но, по данным Г. Гофман- Берлинга (1959, 1960), ответственно за механические процессы, лежащие в основе расхождения хромосом к полюсам.

В выяснении механизма различных этапов клеточного деления особенно большую роль сыграли работы американского исследователя Д. Мезия (1961), изучавшего различные стороны физиологии митоза, в особенности роль митотического аппарата, осуществляющего самый процесс деления. Созданы различные представления о механизме разделения клеточного тела и о физико-химических изменениях клеток при делении. Изучение хромосом выросло в самостоятельную область исследований, которая оказалась органически связанной с генетикой и дала начало цитогенетике.

Наряду с изучением отдельных митозов значительное число исследований было посвящено выяснению закономерностей митотической актив ности тканей, в частности изучению зависимости клеточной пролиферации от физиологического состояния организма и влияния различных эндогенных и экзогенных факторов.

Первые исследования такого характера были выполнены на растительных объектах в самом начале XX в. в связи с изучением периодичности биологических процессов (А. Льюис, 1901; В. Келликот, 1904). В 20-х годах появился ряд фундаментальных исследований, посвященных суточному ритму клеточных делений в проростке растений (Р. Фризнер, 1920; М. Столфелд, 1921). В 30-40-х годах была проведена серия исследований (А. Карлетон, 1934; Ч. Блюменфельд, 1938, 1943; 3. Купер, Г. Франклин, 1940; Г. Блюменталь, 1948; и др.), в которых изучалась митотическая активность в очагах клеточного размножения различных лабораторных животных. Значительно меньше таких работ выполнено на очагах клеточного размножения человека (3. Купер, А. Шифф, 1938; А. Бродерс, В. Дублин, 1939; и др.).

В СССР первое исследование по влиянию на митотический режим физиологических факторов было опубликовано в 1947 г. Г. К. Хрущовим. Начиная с 50-х годов интерес к проблеме митотического режима организма значительно возрос (С. Я. Залкинд, И. А. Уткин, 1951; С. Я. Залкинд, 19,54, 1966; В. Н. Доброхотов, 1963; И. А. Алов, 1964; и др.). Наиболее полно был изучен суточный ритм митотической активности у млекопитающих.

Первые попытки проанализировать механизмы, регулирующие митотическую активность, были предприняты в 1948 г. английским исследователем В. Буллоу. Советские цитологи (JI. Я. Бляхер, 1954; И. А. Уткин, 1959; Г. С. Стрелин, В. В. Козлов, 1959) уделили большое внимание ней- рогуморальной регуляции митотической активности, установив рефлекторный характер регуляции клеточных делений. Оказалось, что воздействие на нервную систему влияет опосредованно - через сдвиг гормонального равновесия. Выяснилось также, что при этом резко усиливается секреция адреналина, тормозящего митотическую активность. Удаление надпочечников приводит к выключению эффекта торможения митозов (А. К. Рябуха, 1955, 1958). Ряд исследований посвящен изучению сложных взаимоотношений между митотической и физиологической активностью организма (С. Я. Залкинд, 1952; И. А. Алов, 1964).

Повышение интереса к проблеме митотических циклов и широкое применение радиоавтографии привело к тому, что в настоящее время подавляющее большинство работ посвящено изучению закономерностей митотического цикла, анализу закономерностей перехода из одного периода в другой, влиянию на митоз разнообразных эндогенных и экзогенных факторов. Это, несомненно, одно из наиболее перспективных направлений в изучении проблемы клеточной пролиферации (О. И. Епифанова, 1973).

Цитология наследственности

В первой половине XX в. в связи с расцветом генетики интенсивно разрабатывались цитологические проблемы, касающиеся наследственности. Так возникла новая область цитологии - кариология.

Пионером кариологических исследований был русский ботаник

С. Г. Навашин. Навашин по справедливости может быть назван создателем цитогенетики, не случайно первый период в развитии этой науки часто называют «русским» или «навашинским». Уже в классических работах по эмбриологии растений, в особенности по цитологии оплодотворения (1898), он сосредоточил свое внимание на морфологии хромосом в клетках некоторых лилейных, в частности, конского гиацинта (Galtonia candicans). В 1916 г. Навашин опубликовал работу, в которой привел тщательное описание хромосомного набора этого растения. Ему удалоеь найти на хромосоме (в центре или на ее полюсе) особый неокрашенный участок (названный им «хроматическим перерывом»), именуемый сейчас центромерой или кинетохором, в области которого хромосома при- .крепляется к веретену. Центромерам принадлежит чрезвычайно важная роль в процессе расщепления хромосом и их расхождения к полюсам делящейся клетки. Навашин впервые показал, что строение хромосом вовсе не является неизменным, но подвержено изменениям в филогенезе и при некоторых особых условиях существования (например, в клетках семян при их длительном хранении). На ряде растительных объектов (Crepis, Vicia, Muscari и др.) ученики Навашина показали, что ка- риолотический анализ может быть использован для филогенетических выводов. Несколько позже начались кариологические исследования на клетках животных и человека. В этих работах также участвовал Навашин. Уже после его смерти, в 1936 г., была опубликована работа, посвященная уменьшению (диминуции) хроматина при развитии яйца лошадиной аскариды, подтвердившая выводы Т. Бовери (1910).

Обстоятельные кариологические работы были выполнены ъ 20-30-х годах советским цитологом П. И. Живаго. Он и его сотрудники исследовали кариотип домашних птиц (куры, индейки; 1924, 1928), мелкого рогатого скота (1930) и человека (1932). Живаго не только выяснил ряд карио- типов, но и начал разработку вопроса о постоянстве числа хромосом в пределах одного организма. На основании литературных данных (по двукрылым) и исследования ряда объектов (эму, нанду, человек) Живаго (1934) пришел к заключению, что в отдельных клетках и целых тканях (особенно у эмбрионов) наблюдаются значительные колебания в числе хромосом. Он придавал этим различиям большое значение, так как они ведут к изменению генома, а следовательно, и наследственных свойств организма. Он высказывал также предположение, что наличие клеток с различным числом хромосом может иметь приспособительное значение, так как увеличивает возможные- варианты кариотипов для последующего отбора. Эта точка зрения, высказанная свыше 30 лет тому назад, разделяется в настоящее время многими исследователями.

Большую роль в развитии рассматриваемого направления сыграла книга К. Белара «Цитологические основы наследственности» (1928, русский перевод 1934). Разделу, посвященному связи хромосом с наследственностью, предшествуют собственно цитологические главы, содержащие данные о строении ядра и цитоплазмы, о клеточном делении, оплодотворении и созревании половых клеток, о партеногенезе. Очень детально и в сравнительном аспекте рассматривается строение хромосом не только у высших позвоночных, но и у беспозвоночных, простейших и растений. Содержатся ценные данные, касающиеся индивидуальности и изменчивости хромосом, обмена фрагментами при кроссинговере, диминуции хроматина, патологии митоза. Книга Белара в течение долгого времени оставалась лучшей монографией по цитологии наследственности.

Постепенно, в связи с интенсивным развитием генетики, цитология наследственности превратилась в цитогенетику, история которой кратко изложена вместе с историей генетики (см. главы 13 и 24). Во второй половине XX в. возникло несколько совершенно новых, весьма перспективных направлений исследований.

В первую очередь следует назвать цитоэкологию, изучающую роль клеточного уровня организации в приспособлении организма к условиям среды. В СССР это направление, тесно связанное с биохимией клетки и особенно с изучением свойств клеточных белков, получило широкое развитие в работах В. Я. Александрова и Б. П. Ушакова.

За последние 10-20 лет большое внимание привлекает изучение общей физиологии клетки и, в частности, закономерностей синтеза и расходования веществ, как участвующих в основных жизненных процессах, так и являющихся ее специфическими продуктами (секреты). К этому же кругу вопросов относится изучение восстановительных процессов в клетке, т. е. физиологической регенерации, обеспечивающей восстановление разрушенных или утраченных клеточных структур и веществ и совершающейся на молекулярном уровне.

Большое значение в цитологии приобрели проблемы детерминации, дифференциации и дедифференциации клеток. Они играют важную роль в эмбриональных клетках и различных категориях клеток, культивируемых вне организма (А. Де-Рейк, Дж. Найт, 1967; С. Я. Залкинд, Г. Б. Юровская, 1970).

Своеобразный раздел цитологии составила цитопатология - область, пограничная с общей патологией и сделавшая значительные успехи в последние десятилетия XX в. Термин «цитопатология» используется для обозначения отрасли биологии, в которой изучение общепатологических процессов ведется на клеточном уровне, и как система знаний о патологических изменениях отдельной клетки. Что касается первого направления, то после классических работ Р. Вирхова попытки свести сущность патологического процесса к изменению микроскопических и суб- микроскопических структур предпринимались неоднократно. Много примеров подобного использования цитологического анализа для понимания патологических процессов в организме содержится в работах Р. Камерона (1956, 1959).

Второе направление может рассматриваться как чисто цитологическое. Оно ставит своей целью изучение патологии самой клетки и ее органоидов, т. е. морфологических, биохимических и физиологических отклонений от нормы, наблюдаемых при происходящих в клетке различных патологических процессах, независимо от их влияния на состояние ткани, органа или всего организма. Развитие этого направления связано прежде всего с накоплением данных об изменении клеток, происходящем вследствие их естественного старения, а также различных резких цитопатологических изменений, наблюдаемых при воздействии тех или иных неблагоприятных факторов (физических, химических, биологических) внешней среды. Особенно значительное развитие получило изучение патологических изменений под влиянием неблагоприятных воздействий на клетку в эксперименте и исследование механизма действия таких факторов. Эти исследования получили широкое развитие в первую очередь в радиобиологии, где всестороннее изучение реакции клетки на воздействие лучистой энергии возможно не только на клеточном или субклеточном, но и на молекулярном уровне.

Мгновенное заживление ран и молниеносное развитие эмбрионов – эти картины из фантастических фильмов могут стать реальностью.

Многочисленные исследования, которые сейчас ведут учёные, уже показали, что ключевую роль при эмбриональном развитии и регенерации тканей играют биоэлектрические сигналы, генерирующиеся с участием клеточной мембраны. Например, на модели заживления раны роговицы было показано, что колебания мембранного потенциала, создающие в ткани электрические поля, регулируют миграцию клеток, их поляризацию и частоту делений, то есть восстановление поврежденной ткани. Потенциал клеточной мембраны формируется при участии имеющихся в ней ионных каналов. Ионные токи, как показывают исследования, имеют огромное значение для деления (дифференцировки) клеток - миобластов, кардиомиоцитов, нейронов. При их делении и слиянии потенциал мембраны изменяется от -10 до -70 мВ, т.е. мембрана становится более отрицательно заряженной (гиперполяризуется). Однако что тут следствие, а что причина: то ли электросигналы – следствие клеточных изменений, то ли наоборот, до сих пор было неясно.

Группа исследователей из Университета Тафтса в Медфорде (Tufts University, Medford, Массачусетс, США) изучили влияние изменения мембранного потенциала на способность клеток ММСК (мультипотентных мезенхимальных стромальных клеток) костного мозга человека к делению. Сначала они исследовали, зависит ли изменение мембранного потенциала клеток от стадии их деления. Чтобы запустить деление клеток, авторы исследования воздействовали на них химически, с помощью двух веществ (дексаметазона и индометацина), и затем отслеживали изменение яркости окраски флуоресцентного красителя, реагирующего на величину мембранного потенциала (деполяризацию клетки). Выяснилось, что флуоресценция по мере дифференцировки клетки уменьшается, т.е. потенциал снижается и происходит гиперполяризация клеточной мембраны. Происходит это постепенно – в течение второй, третьей недели, и достигает максимума к четвертой неделе дифференцировки клеток.

Далее исследователи проверили, как будет влиять на деление клеток искусственное уменьшение гиперполяризации мембраны клетки. Деполяризацию клеточной мембраны они вызвали, повысив концентрацию ионов калия в среде культивирования клеток. Результат такого воздействия оценивали по появлению маркеров – характерных генов, возникающих при дифференцировке исследуемых клеток. Также клеточные колонии окрашивали специфичным для определенного вида клеток красителем. Оказалось, что деполяризация клеточной мембраны подавляет деление клеток, причем обратимо. При возвращении в стандартные условия стволовые клетки костного мозга восстанавливали свою способность к делению спустя три недели. Мембранный потенциал при этом возвращался к исходному уровню.

Тогда исследователи решили провести обратный эксперимент – увеличить гиперполяризацию клеточной мембраны. Для этого клетки подвергли воздействию соответствующих веществ (пинацидила и диазоксида). Через семь суток оценка эффективности дифференцировки клеток показала, что экспрессия генов-маркеров повышается в 2-4 раза! Причем с повышением концентрации веществ-поляризаторов увеличивалась и экспрессия маркерных генов.

Таким образом группе из Университета Тафтса в Медфорде удалось доказать, что изменение мембранного потенциала в сторону гиперполяризации предшествует дифференцировке клеток, и что с его помощью можно увеличивать эффективность дифференцировки ММСК под действием соответствующих веществ.

Сейчас исследователи занимаются изучением механизма влияния мембранного потенциала на дифференцировку клеток. Они уверены, что в будущем контроль потенциала мембраны будет широко использоваться для стимулирования дифференцировки различных типов стволовых клеток в нужном направлении.

Клеточные оболочки у гопатозиговых, как правило, сплошные. Так выглядят взрослые, вполне сформировавшиеся клетки. У клеток, недавно поделившихся и еще не вполне зрелых или находящихся в стадии деления, можно наблюдать различные по своему строению участки оболочки, иногда отделяющиеся друг от друга ясно заметной чертой (рис. 240, 3). Такие участки напоминают пояски (сегменты) некоторых видов рода пениум (Решит) из де-смидиевых. Подобного рода сегмептирован-ность наблюдается только у клеток с не вполне развитым наружным слоем оболочки. Приросте клетки сегменты смыкаются и распознавание пояска становится совершенно невозможным.[ ...]

[ ...]

Каждое клеточное деление является непрерывным процессом, поскольку ядерные и цитоплазматические фазы, вопреки различиям в содержании и по значению, координированы во времени.[ ...]

Упорядоченность клеточных делений у эукариотов зависит от координации событий в клеточном цикле. У эукариот эта координация осуществляется путем регуляции трех переходных периодов в клеточном цикле, а именно: вступление в митоз, выход из митоза и прохождение через пункт, называемый «Старт», который вводит инициацию синтеза ДНК (в-фазу) в клетке.[ ...]

В культуре каллуса клеточное деление происходит беспорядочно во всех направлениях, и возникает неорганизованная масса ткани; следовательно, в каллусе нет вполне определенных осей полярности. В меристеме побега или корня, напротив, мы наблюдаем высокоорганизованное строение ткани, и характер деления строго упорядочен. Было обнаружено, что при некоторых условиях культивирования в каллусе образуются стеблевые или корневые меристемы и в результате регенерируют новые целые растения.[ ...]

На заключительном этапе клеточного деления происходит цитокинез, который начинается еще в анафазе. Этот процесс заканчивается образованием в экваториальной зоне клетки перетяжки, которая разделяет делящуюся клетку на две дочерние клетки.[ ...]

Мэзия Д. Митоз и физиология клеточного деления.- М.: ИЛ, 1963.[ ...]

По современным представлениям, клеточный центр - само-воспроизводящаяся система, репродукция которой всегда предшествует репродукции хромосом, вследствие чего ее можно рассматривать как первый акт клеточного деления.[ ...]

Фитогормоны могут регулировать деление растительных клеток, и в этом разделе мы обсудим некоторые способы такой регуляции. Поскольку митоз обычно связан с репликацией ДИК, внимание исследователей было привлечено к. проблеме влияния фитогормонов на метаболизм ДНК. Однако регуляция клеточного деления может, несомненно, осуществляться и на других стадиях клеточного цикла, после репликации ДНК. Имеются данные, что по крайней мере иногда фитогормоны регулируют деление через их влияние на митоз, а не на синтез ДНК.[ ...]

Сведения о влиянии на синтез ДНК и клеточное деление других фитогормонов, кроме ауксинов и цитокининов, встречаются довольно редко. Имеются сообщения об увеличении содержания ДНК и повышении скорости клеточного деления в некоторых органах и тканях растений под влиянием гибберелли-нов, но из этих данных нельзя сделать вполне определенных выводов, так как не ясно; идет ли в данном случае речь о прямых или косвенных эффектах.[ ...]

На инфицированных листьях, уже прошедших стадию клеточного деления в ходе их развития (длина листьев растений табака и китайской капусты в этот период составляет примерно 4-6 см), мозаика не развивается, и такие листья оказываются равномерно окрашенными и более бледными, чем в норме. В старых листьях с симптомами мозаики на основном, более светлом фоне обнаруживается большое количество мелких островков темнозеленой ткани. В ряде случаев мозаичные участки могут быть приурочены к наиболее молодым частям листовой пластинки, т. е. к ее основанию и центральной части листа. В следующих друг за другом системно инфицированных молодых листьях количество мозаичных участков становится в среднем все меньше и меньше, тогда как их размер увеличивается, однако у различных растений можно наблюдать и значительные отклонения от этой общей закономерности. Характер мозаики определяется на какой-то очень ранней ■стадии развития листа и может оставаться неизменным в течение большей части его онтогенетического развития, за исключением того, что мозаичные участки всегда увеличиваются в размерах. При некоторых мозаичных заболеваниях темно-зеленые участки оказываются связанными в основном с жилками, что придает листу характерный вид (фото 38, Б).[ ...]

Как уже отмечалось, мейоз состоит из двух циклов клеточного деления: первого, приводящего к уменьшению числа хромосом вдвое, и второго, идущего по типу обычного митоза.[ ...]

Нуклеолонемы сохраняются на протяжении всего цикла клеточного деления и в телофазе переходят от хромосом к новому ядрышку.[ ...]

В верхушечных зонах корней и побегов, где преобладают клеточные деления, клетки относительно мелкие и имеют хорошо заметные сферические ядра, располагающиеся примерно в центре; цитоплазма не содержит вакуолей и обычно интенсивно окрашивается; клеточные стенки в этих зонах тонкие (рис. 2.3; 2.5). Каждая дочерняя клетка, образовавшаяся в результате деления, вдвое меньше родительской. Однако такие клетки- продолжают увеличиваться в размерах, но в данном случае их рост происходит за счет синтеза цитоплазмы и материала клеточной стенки, а не за счет вакуолизации.[ ...]

Начальный рост завязи во время развития цветка связан с клеточным делением, практически не сопровождаемым вакуолизацией клеток. У многих видов деление прекращается во время или сразу после раскрывания цветков, и последующий рост плода после опыления определяется прежде всего увеличением размеров клеток, а не их числа. Например, у томатов (Lycoper-sicum esculentum) и черной смородины (Ribes nigrum) клеточные деления прекращаются при зацветании, и дальнейший рост происходит только путем растяжения клеток. У таких видов конечная величина плодов зависит от числа клеток завязи во время раскрывания цветков. Вместе с тем у других видов (например, у яблони) клеточное деление может продолжаться некоторое время после опыления.[ ...]

Молодые листья в первой фазе растут главным образом за счет клеточного деления, а в дальнейшем преимущественно за счет растяжения клеток. Хотя лист в отношении своего морфогенеза в принципе автономен, как это показано опытами с молодыми зачатками листьев в культурах на искусственном питательном субстрате, окончательные размеры и форма листа в значительной мере определяются - наряду с факторами внешней среды, особенно светом, - коррелятивным влиянием других органов растения. Удаление верхушки побега или других листьев приводит к увеличению оставшихся листьев. Если удалить кончик корня, то наблюдается (например, у Armor acia lapathifolia) нарушение роста тканей листа, находящихся между жилками, в то время как жилки листа проступают сильнее, так что листья выглядят как кружево. Тот факт, что корни являются местом синтеза гиббереллинов и цитокининов и что изолированные листья отвечают на оба эти гормона увеличением роста своей поверхности, позволяет предположить взаимосвязь между образованием гормонов в корне и ростом листа. При этом следует иметь в виду, что скорость роста листа связана положительной корреляцией с содержанием гиббереллинов и цитокининов.[ ...]

Макроспорогенез и гаметогенез у них составляют единую цепь клеточных делений, завершающим звеном которой является формирование женского гаметофита крайне упрощенного строения, превратившегося во внутренний орган спорофита. Развитие его максимально сокращено и структура доведена до нескольких клеток. Однако несмотря на морфологическую редукцию, зародышевый мешок состоит из обособленной системы клеток, отличающихся четкой функциональной дифференциацией на разных этапах их развития.[ ...]

В своем широко известном рассмотрении проблемы старения на клеточном уровне американский биохимик Л. Хейфлик указывает на три процесса, связанных со старением. Один из них - ослабление функциональной эффективности неделящихся клеток: нервных, мышечных и других. Второй - это хорошо известное постепенное увеличение с возрастом «жесткости» коллагена, на долю которого приходится более трети веса белков организма. Наконец, существует третий процесс - ограничение клеточного деления на уровне примерно 50 поколений. Это относится, в частности, к фибр областам - специализированным клеткам, производящим коллаген и фибрин и утрачивающим способность к делению в клеточных культурах к 45-50 поколениям.[ ...]

В некоторых случаях при прорастании зиготы, а также при вегетативном делении клеток наблюдаются сильные отклонения формы клеток от нормального типа. В результате получаются различные уродливые (тератологические) формы. Наблюдения тератологических форм показало, что они могут возникать от различных причин. Так, при неполном клеточном делении происходит только деление ядра, а разделительная поперечная перегородка между нолуклетками не образуется, в результате чего возникают уродливые клетки, состоящие из трех частей. Крайние части представляют собой нормальные полуклетки, а посередине между ними находится уродливая вздутая часть различной формы. Особенностью некоторых видов является образование аномальных форм с неодинаковыми очертаниями вполне развившихся полуклеток и совершенно нормальной оболочкой. У рода клостериум, например, часто наблюдаются сигмоидные формы, у которых одна полуклетка повернута к другой на 180°.[ ...]

Характерное для ци-токининов физиологическое действие - это стимуляция клеточного деления в тканях каллуса. По всей вероятности, цитокинины стимулируют клеточное деление и в интактном растении. В пользу этого говорит обычно наблюдаемая тесная корреляция между содержанием цитокинина и ростом плодов на ранних стадиях (см. рис. 11.6). Для действия цитокинина необходимо присутствие ауксина. Если в среде имеется только ауксин, но нет цитокинина, то клетки не делятся, хотя и увеличиваются в объеме.[ ...]

Цитокинины были названы так в связи с их способностью стимулировать цитокинез (клеточное деление). Это производные пуринов. Раньше их называли также кининами, а позднее с целью четкого отграничения от носящих то же название полипептидных гормонов животных и человека, влияющих на мышцы и кровеносные сосуды, было предложено название «фитокинины». Из соображений приоритета решено было сохранить термин «цитокинины».[ ...]

Ц- - ткани, автотрофные по отношению к цитокинииу, способные к образованию факторов клеточного деления.[ ...]

У неперешнурованных форм, как, например, у представителей родов клостериум или пени-ум, клеточное деление происходит еще более сложным образом.[ ...]

Обработка изолированных корней цитокинином, особенно в сочетании с ауксином, стимулирует клеточные деления, но не приводит к увеличению скорости растяжения корня, а поскольку стимуляция деления касается только клеток, предназначенных для проводящей ткани, мы обсудим роль цитокинииов в корнях ниже.[ ...]

После заложения листа в апексе побега начинаются процессы его роста и развития, включающие клеточное деление, рост, растяжением и диффёренцировку (см. гл. 2). Естественно думать, что эти процессы находятся под контролем фитогормонов, одним из которых, очевидно, является ауксин. Однако нельзя сказать, что действие ауксина связано со всеми аспектами роста листа. Было обнаружено, что ауксины в зависимости от их концентрации могут стимулировать или ингибировать рост центральной и боковых жилок, но мало влияют на ткани мезофилла между жилками. В настоящее время гормональная регуляция роста листа изучена мало. Известно только, что ауксин, по-видимому, необходим для роста жилок.[ ...]

Подавляющее большинство одноклеточных организмов -существа бесполые и размножаются путем деления клетки, что ведет к непрерывному образованию новых особей. Деление прокариотической клетки, из которой, в основном, состоят эти организмы, начинается с деления митозом наследственного вещества -ДНК, вокруг половинок которой впоследствии образуются две ядерные области дочерних клеток - новых организмов. Поскольку деление происходит митозом, то дочерние организмы по наследственным признакам полностью воспроизводят материнскую особь. Многие бесполые растения (водоросли, мхи, папоротники), грибы и некоторые одноклеточные животные образуют споры - клетки с плотным и оболочками, защищающими их к неблагоприятных условиях средь!. При олагоприятных условиях ооолочка споры раскрывается и клетка начинает дслиться митозом, давая начало новому организму. Бесполым размножением является также почкование, когда от родительской особи отделяется небольшой участок тела, из которого затем развивается новый организм. Бесполым является также вегетативное размножение у высших растений. Во всех случаях при бесполом размножении воспроизводятся в больших количествах генетически идентичные организмы, практически полностью копирующие родительский организм. Для одноклеточных организмов клеточное деление - это акт выживания, так как организмы, которые не размножаются, обречены на вымирание. Размножение и связанный с ним рост вносят в клетку свежие материалы и эффективно препятствуют старению, сообщая тем самым ей потенциальное бессмерше.[ ...]

Первые исследования, прямой задачей которых было изучить влияние фитогормонов на синтез ДНК и клеточное деление, были проведены в 50-е годы Скугом и его сотрудниками на стерильной культуре паренхимы из сердцевины табака. Они обнаружили, что как для синтеза ДНК, так и для митоза необходим ауксин, но что митоз и цитокинез происходят только в присутствии помимо ауксина определенного количества цитокшш-на. Таким образом, эти первые работы показали, что ауксин может стимулировать синтез ДНК, но совсем не обязательно это приводит к митозу и цитокинезу. Митоз и цитокинез, очевидно, регулируются цитокинином. Эти выводы были впоследствии неоднократно подтверждены другими исследователями. Однако до сих пор мало известно о механизме стимуляции ауксином синтеза ДНК, хотя имеются сведения, что гормон может регулировать активность ДНК-полимеразы. Итак, в процессе синтеза ДНК ауксины, по-видимому, играют роль пермиссивиого фактора, тогда как цитокииину, согласно мнению большинства исследователей, принадлежит роль стимулятора (но ие регулятора). Вместе с тем несомненно, что цитокинины оказывают определенное действие на митоз и цитокинез, очевидно, влияя на синтез или активацию специфических белков, необходимых для митоза.[ ...]

Инициальные клетки и их непосредственные производные не вакуолизированы, и в этой.зоне активное клеточное деление продолжается. Однако по мере удаления от кончика корня деления становятся менее частыми, а сами клетки вакуолизиру-ются и увеличиваются В размерах. У многих видов («например, у пшеницы) в корне четко выделяются зона клеточного деления и зона клеточного растяжения, однако у других, например бука лесного (Fagus sylvatica) в клетках, которые уже начали вакуолизироваться, может происходить определенное число делений.[ ...]

Жизненный цикл любой клетки, как правило, слагается из двух фаз: периода покоя (интерфазы) и периода деления, в результате которого образуются две дочерние клетки. Следовательно, с помощью клеточного деления, которому предшествует деление ядра, осуществляется рост отдельных тканей, а также всего организма в целом. В период деления ядро претерпевает ряд сложных упорядоченных изменений, в процессе которых исчезают ядрышко и оболочка ядра, а хроматин конденсируется и образует дискретные, легко идентифицируемые палочковидные тельца, названные хромосомами, число которых для клеток каждого вида постоянно. Ядро неделящейся клетки называют интерфазным; в этот период обменные процессы в нем проходят наиболее интенсивно.[ ...]

Наши данные совпадают с данными Сакса и др. [йасЪэ ек а!., 1959], что обработка гиббереллипом значительно увеличивает число клеточных делений в медуллярной, меристеме. Повышение митотической активности центральной зоны апексов и их переход в генеративное состояние проходят под влиянием благоприятной длины дня значительно быстрее, чем под влиянием обработки гиббереллипом.[ ...]

При действии 2,4-Д и его производных на кончики корней лука в меристеме ¡наблюдалось ажатие и ¡слипание хромосом, замедленное деление их, хроматидные мосты, фрагменты, при сильном повреждении - беспорядочное расположение в цитоплазме хроматина, уродливые ядра. Характерно, что в отличие от карбаматов, под действием 2,4-Д ядерное деление продолжалось (т. е. аппарат веретена не ингибировался), и клеточное деление прекращалось только при очень больших концентрациях 2,4-Д (6,10).[ ...]

В нормальных процессах обмена природные регуляторы роста (ауксины, гиббереллины, цитокинины, дормины и т. д.), действуя совместно и строго согласованно, регулируют деление, рост и дифференциацию клеток. Первичное действие этих фитогормонов состоит в том, что они являются «эффекторами», т. е. способны активировать блокированные гены и ферменты, содержащие сульфгидрильную группу. Например, они активируют молекулу ДНК, в результате синтезируются молекулы мРНК и создаются условия для синтеза белка и протекания других процессов, связанных с ростом (репликация ДНК, клеточное деление и др.).[ ...]

При бесполом размножении происходит отшнуровывание или отпочковывание дочерней клетки от материнской, или разделение материнской клетки на две дочерние. Такому клеточному делению предшествует воспроизводство хромосом, в результате чего число их удваивается. Образующийся во время деления специальный аппарат - веретено - обеспечивает равное распределение хромосом между дочерними клетками. При этом нити веретена, прикрепляясь к особым участкам хромосом, называемым центромерами, как бы разводят к противоположным концам клетки две дочерние хромосомы, образовавшиеся из одной в результате ее воспроизведения, в основе которого лежит молекулярный механизм воспроизведения дезоксирибонуклеиновой кислоты, обеспечивающий наследственную передачу признаков от исходной клетки к дочерним.[ ...]

Хотя основное увеличение объема клетки в процессе вакуолизации происходит за счет поглощения воды, в этот период продолжается активный синтез нойой цитоплазмы и вещества клеточной стенки, так что сухой вес клетки также увеличивается. Таким образом, процесс роста клетки, начавшийся до вакуолизации, продолжается и во время этой фазы. Кроме того, зоны клеточного деления и вакуолизации не имеют четкого разграничения и как в побегах, так и в корнях многих видов растеиий деление происходит в клетках, которые начали вакуолизироваться. Деление также может происходить в ва-куолпзированных клетках пораненных тканей. В кончиках корней зоны деления и вакуолизации разграничены более четко, и деление вакуолизироваиных клеток происходит значительно ■реже.[ ...]

Одновременно с этими внутренними изменениями наружная твердая стенка ооспоры расщепляется на ее вершине на пять зубцов, давая выход проростку, возникающему из центральной клетки (рис. 269, 3). Первое деление центральной клетки происходит поперечной перегородкой, перпендикулярной к ее длинной оси, и приводит к образованию двух функционально различных клеток. Из одной, более крупной клетки в дальнейшем образуется стеблевой побег, который на начальной стадии развития называют предростком, из другой, меньшей клетки - первый ризоид. Оба они растут путем поперечных клеточных делений. Предросток растет вверх и довольно быстро зеленеет, заполняясь хлоропластами, первый ризоид направляется вниз и остается бесцветным (рис. 269, 4). После ряда клеточных делений, сообщающих им строение однорядных нитей, происходит их дифференцировка на узлы и междоузлия, и дальнейший их верхушечный рост протекает уже так, как было описано выше для стебля. Из узлов предростка возникают вторичные предростки, мутовки листьев и боковые ветви стебля, из узлов первого ризоида - вторичные ризоиды и их мутовчатые волоски. Таким путем и формируется таллом, состоящий из нескольких стеблевых побегов в верхней части и нескольких сложных ризоидов в нижней части (рис. 2G9, 5).[ ...]

Геном прокариотического организма, такого, как бактерия Escherichia coli, состоит из одной хромосомы, представляющей собой двойную спираль ДНК, имеющую кольцевое строение и свободно лежащую в цитоплазме. При клеточном делении две образовавшиеся в результате репликации двухцепочечные молекулы ДНК без митоза распределяются между двумя дочерними клетками.[ ...]

В случае ДНК-содержащих вирусов человека и животных их свойство вызывать опухоли зависит от отношения вирусной ДНК к хромосомам клетки. Вирусная ДНК может оставаться подобно плазмидам в клетке в автономном состоянии, реплицируясь вместе с клеточными хромосомами. При этом регуляция деления клеток не нарушается. Однако вирусная ДНК может включиться в одну или несколько хромосом клетки-хозяина. При таком исходе деление клеток становится нерегулируемым. Другими словами, инфицированные ДНК-содержащим вирусом клетки превращаются в раковые. Примером онкогенных ДНК-содержащих вирусов является вирус вУ40, выделенный много лет назад из клеток обезьян. Онкогенное действие этих вирусов зависит от того, что отдельные вирусные гены действуют как онкогены, активизируя клеточную ДНК и побуждая клетки к вступлению в в-фазу с последующим неконтролируемым делением. РНК-содержащие вирусы из-за включения их РНК в одну или несколько хромосом клетки-хозяина также обладают онкогенным действием. В геноме этих вирусов также есть онкогены, однако они существенно отличаются от онкогенов ДНК-содержащих вирусов тем, что в геноме кле-ток-хозяев присутствуют их гомологи в виде протоонкогенов. Когда РНК-содержащие вирусы инфицируют клетки, они «захватывают» в свой геном протоонкогены, которые представляют собой последовательности ДНК, контролирующие синтез белков (киназ, факторов роста, рецепторов факторов роста и др.), участвующих в регуляции клеточного деления. Однако известно, что существуют и другие способы превращения клеточных протоонкогенов в вирусные онкогены.[ ...]

Обладая всем необходимым для осуществления белкового синтеза, хлоропласты относятся к числу самовоспроизводящихся органелл. Они размножаются путем перетяжки надвое и, в очень редких случаях, почкованием. Эти процессы приурочены к моменту клеточного деления и идут столь же упорядоченно, как и деление ядра, т. е. события следуют здесь в строгой последовательности одно за другим: стадия роста сменяется периодом дифференциации, за которым наступает состояние зрелости, или готовности к делению.[ ...]

Растворимость в воде - 90 мг/л, механизм действия - ингибирование процесса фотолиза воды. Препарат лентагран с. п. и к. э. обладает избирательным действием на кукурузе, очень эффективен против щирицы запрокинутой в фазе 4-6 листьев, невосприимчивой к триазину. Следует отметить также ГМК, диэтанол-аминную соль которого мальзид-30 под названием МН-30 применяют для подавления процессов клеточного деления и прорастания семян.[ ...]

Термин «рост растений» относится к необратимому увеличению их размера1. Увеличение размера и сухого веса организма связано с увеличением количества протоплазмы. Это может происходить как за счет увеличения размера клеток, так и их числа. Увеличение размера клетки в какой-то степени ограничивается зависимостью между ее объемом и площадью поверхности (объем шара увеличивается быстрее, чем площадь его поверхности). Основой роста является клеточное деление. Однако деление клеток, биохимически регулируемый процесс и не обязательно прямо контролируется какой-либо зависимостью между объемом клетки и площадью ее оболочки.[ ...]

Тем не менее характерной особенностью большинства этих соединений является способность подавлять процесс митотического клеточного деления при концентрации около 50 мМ/л.[ ...]

Растения традесканции (клон 02), несущие молодые соцветия на одинаковой стадии развития, выращивали в лабораторных условиях на почве, отобранной на территории пермокарбоновой залежи Усинского нефтяного месторождения. По мере появления цветков волоски тычиночных нитей традесканции ежедневно исследовали на частоту соматических мутаций. Наряду с этим вели учет морфологических аномалий: гигантские и карликовые клетки, разветвления и изгибы волосков, нелинейные мутанты. Также учитывали белые мутантные события и угнетение клеточного деления (количество клеток в волоске менее 12).[ ...]

Еще в начале XIX в. исследователи были столь удивлены единством структуры сосудистых растений, ¡что надеялись обнаружить единичные апикальные клетки также у голосеменных и покрытосеменных растений и даже описали такие клетки. Однако позднее стало ясно, что в побегах высших растений не существует какой-то одной четко.различимой апикальной клетки, но в апикальной части побега цветковых различаются две зоны: наружная туника, или мантия, которая окружает и покрывает внутренний корпус (рис. 2.3). Эти зоны хорошо различаются по преобладающим плоскостям клеточных делений. В тунике деления происходят преимущественно антиклинально, т. е. ось митотического веретена параллельна поверхности, а образующаяся между двумя дочерними клетками поперечная стенка располагается перпендикулярно.поверхности. В корпусе же деления происходят во всех плоскостях как антиклинально, так,и периклинально (т. е. веретено перпендикулярно, а новая стенка параллельна поверхности). Тол ищи а тупики до некоторой степени варьирует, и в зависимости от вида она может состоять из одного, двух и более слоев клеток. Кроме того, даже в пределах вида число слоев туники может меняться в зависимости от возраста растения, статуса питания и других условий.[ ...]

Совсем недавно в цитоплазме клеток различных организмов, в том числе и водорослей, обнаружены короткие (по сравнению с каналами зндоплазматической сети) образования с жесткими гладкими контурами, получившие название микротрубочек (рис. 6, 3). В сечении они имеют вид цилиндров с диаметром просвета 200-350 А. Микротрубочки оказались крайне динамичными структурами: они могут то появляться, то исчезать, перемещаться из одного района клетки в другой, увеличиваться или уменьшаться в числе. Они сосредоточиваются преимущественно вдоль плазмалеммы (самый паружный слой цитоплазмы), а в период клеточного деления перемещаются в область формирования перегородки. Их скопления обнаруживаются также вокруг ядра, вдоль хлоропласта, около стигмы. Последующие исследования показали, что эти структуры присутствуют не только в цитоплазме, по и в ядре, хлоропласте, жгутиках.[ ...]

Скуг использовал следующую методику культуры тканей. Он помещал изолированные кусочки сердцевины табака на поверхность агарового геля, содержащего различные питательные вещества и другие, гормональные, факторы. Варьируя состав агаровой среды, Скуг наблюдал за изменениями в росте и диф-ференцировке клеток сердцевины. Было обнаружено, что для активного роста клеток необходимо добавлять в агар не только питательные, но и гормональные вещества, такие, как ауксии. Однако если к питательной среде добавляли только один ауксин (ИУК), то кусочки сердцевины росли очень слабо, и этот рост в основном определялся увеличением размеров клеток. Клеточные деления были очень немногочисленны, а диффе-ренцировки клеток не наблюдалось. Если лее вместе с ИУК в агаровую среду вносили пуриновое основание аденин, то клетки паренхимы начинали делиться, образуя каллусную массу. Аденин, добавленный без ауксина, не вызывал клеточных делений в сердцевинной ткани. Следовательно, для индукции клеточного деления необходимо взаимодействие между аденииом и ауксином. Аденин - это производное пурина (6-аминопурии), входящее в состав природных нуклеиновых кислот.[ ...]

Ауксин регулирует не только активацию камбия, по и диф-ферендировку его производных. Известно также, что ауксин является не единственным гормональным регулятором активности камбия и диффереицировки проводящей ткани. Наиболее просто н наглядно это было показано в опытах, в которых ранней весной до распускания почек брали веточки растений с рас-сеяннопоровой древесиной, удаляли с них почки и через верхнюю раневую поверхность вводили в эти сегменты стебля ростовые гормоны в ланолиновой пасте или в виде водного раствора. Примерно через 2 пед приготовляли срезы стебля для наблюдения за активностью камбия. Без введения гормонов клетки камбия не делились, по в варианте с ИУК можно было наблюдать деление клеток- камбия и дифференцировку новых элементов ксилемы, хотя оба эти процесса шли не очень активно (рис. 5.17). При введении только ГА3 клетки камбия делились, но производные клетки на его внутренней стороне (ксилема) не дифференцировались и сохраняли протоплазму. Однако при тщательном наблюдении можно было заметить, что в ответ на действие ГА3 образуется некоторое количество новой флоэмы с дифференцированными ситовидными трубками. Одновременная обработка ИУК и ГА3 приводила к активации клеточного деления в камбии, и образовывались нормально дифференцированные ксилема и флоэма. Измеряя толщину новой ксилемы и флоэмы, можно количественно подойти к изучению взаимодействия ауксина, гиббереллииа и других регуляторов (рис. 5.18). Такие опыты позволяют предположить, что концентрация ауксина и гиббереллииа регулирует не только скорость клеточного деления в камбии, но и влияет на соотношение инициальных клеток ксилемы и флоэмы. Сравнительно высокая концентрация ауксина благоприятствует образованию ксилемы, тогда как при высоких концентрациях гиббереллииа образуется больше флоэмы.[ ...]

Радиационные повреждения уникальных структур могут долгое время оставаться в скрытой форме (быть потенциальными) и реализоваться в процесс репликации генетического аппарата. Но часть потенциальных повреждений восстанавливает специальная ферментативная система репарации ДНК. Процесс начинается уже во время облучения. Система рассчитана на ликвидацию дефектов нуклеиновых кислот не только радиационного происхождения, но и возникающих при других нефизиологических воздействиях. Это не удивительно, поскольку нерадиационные факторы индуцируют мутации в принципе не отличающиеся от тех, которые вызывает облучение. Радиационное поражение массовых структур зачастую для клетки нелетально, но является причиной остановки клеточного деления и модификации многих физиологических функций и ферментативных процессов. Возобновление клеточного цикла знаменует освобождение от повреждений, послуживших причиной задержки деления.