Железы внутренней секреции. Глава IX

Реферат на тему:


Основные механизмы регуляции активности эндокринных желез

1. Автономная (базальная) саморегуляция активности эндокринной функции. Основана на обратном влиянии обменных процессов. Установлена в экспериментах с перфузией железы растворами, содержащими регулируемый фактор (метаболит) в различных концентрациях. Характеризуется следующей закономерностью: регулируемый железой метаболит оказывает стимулирующее действие на эндокринную функцию, если гормон снижает его содержание, но тормозит ее, если гормон повышает содержание метаболита (пример: влияние уровня глюкозы крови на выделение инсулина и глюкагона). Этот механизм - основа поддержания метаболического гомеостаза.

2.Взаимодействие между гипофизом и железами-мишенями. Основано на прямой (положительной, стимулирующей) связи и обратной (отрицательной, тормозящей) связи, носит также название «плюс- минус-взаимодействие». Например, аденогипофиз выделяет АКТГ, оказывающий стимулирующее действие на кору надпочечников и выделение кортизола, который, в свою очередь, тормозит секрецию АКТГ. Этот принцип является основой саморегуляции активности эндокринной системы и обеспечивает поддержание эндокринного гомеостаза.

3.Нервный контроль эндокринной активности. Осуществляется через гипоталамус. Основные пути:

1)парааденогипофизарный (нервно-проводниковый), реализуется через симпатические и парасимпатические нервы желез;

2)трансгипофизарный, включающий гипоталамические факторы (гормоны) и гуморальный контроль функции аденогипофиза.

Известные транспортные системы, обеспечивающие движение БАВ в гипофиз:

1) выделение в портальную систему гипофиза гипоталамических факторов, активирующих (либерины) или угнетающих (статины) гормонопоэз в передней доле гипофиза;

2) аксональный транспорт - перенос нейрогормонов (вазопрессина и окситоцина) из нейросекреторных ядер (супраоптического и паравентрикулярного) в заднюю долю гипофиза.

Гипоталамическая регуляция функций аденогипофиза контролируется отрицательной обратной связью. Например, кортиколиберин увеличивает секрецию АКТГ, который тормозит активность гипоталамических клеток, продуцирующих кортиколиберин. В системе регуляции активности длинных эндокринных осей «гипоталамус-гипофиз-железа-мишень» эта петля обратной связи носит название «короткой». Второй вариант регуляции активности такой же оси - «длинная петля» обратной связи, т.е. взаимодействие между гипоталамусом и железой-мишенью, основанное на чувствительности гипоталамических нейронов, продуцирующих соответствующий рилизинг-фактор, к гормону соответствующей железы-мишени. Все эти взаимодействия обеспечивают поддержание эндокринного гомеостаза.

4. Внешний контроль. В нем принимают участие лимбические структуры, старая и новая кора, через которые осуществляются воздействия из внешней среды (холод, тепло, свет, факторы, вызывающие психическое и эмоциональное напряжение и т.д.). Внешний контроль переводит эндокринную систему на иной функциональный уровень, соответствующий новым потребностям организма, т.е. обеспечивает адаптацию к меняющимся условиям внешней среды.

Биологическое значение эндокринной функции:

1) поддержание гомеостаза;

2) формирование адаптивных (приспособительных) реакций.


Механизмы компенсации нарушенной функции эндокринной железы

Изменения функций эндокринных желез, происходящие под влиянием повреждающих факторов среды, как правило, сопровождаются нарушениями в организме обмена веществ и физиологических функций. Соответственно, компенсаторные процессы в эндокринной системе следует разделить на две основные группы:

1)компенсация нарушенной функции самой эндокринной железы;

2)компенсация нарушенных процессов метаболизма и физиологических функций, регулируемых в организме эндокринной железой, при недостаточности ее гормонов.

Механизмы компенсаторных процессов первой группы могут быть как внутриорганными и внутрисистемными, так и межсистемными. Во-первых, компенсация нарушенной функции той или иной железы осуществляется за счет механизмов саморегуляции на уровне самой железы или системной регуляции по принципу обратной связи. Во-вторых, компенсация реализуется, как и в большинстве других органов, за счет мобилизации процессов физиологической и репаративной регенерации, способность к которой у железистой ткани достаточно высока. В-третьих, компенсаторные процессы осуществляются за счет изменения функций других систем организма, например, обеспечивающих всасывание необходимых для синтеза гормонов железы субстратов в желудочно-кишечном тракте, транспорт гормонов в свободном состоянии и в составе белковых комплексов, метаболизм и деградацию гормонов, экскрецию гормонов, наконец, связывание гормонов на уровне эффектора.

Компенсаторные процессы второй группы реализуются благодаря тому, что в регуляции основных метаболических и функциональных процессов принимает участие, как правило, несколько гормонов разных эндокринных желез, что позволяет компенсировать недостаточность или избыточность одних гормонов эффектами других (внутрисистемная компенсация). Компенсаторные процессы этой группы осуществляются и за счет межсистемных реакций с помощью нервной регуляции и саморегуляции метаболических и физиологических функций.

Поскольку механизмы саморегуляции функции эндокринной железы, прежде всего, связаны с процессами депонирования гормонов, их предшественников и даже субстратов в самой железе, создаваемый таким образом запас гормонов, предшественников и субстратов может обеспечить быструю, но кратковременную компенсацию возникающего в организме дефицита субстрата или повышенной потребности в гормоне. Так, в коллоиде щитовидной железы, находящемся в фолликулах, хранятся йодтиронины и йодтирозины и даже свободный йодид.

Ауторегуляция синтеза и секреции тиреоидных гормонов на уровне самой железы обеспечивается уровнем йода. Недостаток его активирует экстракцию йодида из крови, возрастание кровотока через щитовидную железу и ускорение биосинтеза тиреоидных гормонов. Напротив, избыток йодида подавляет синтез и секрецию тиреоидных гормонов. Механизм ингибирующего действия йодида, как правило, проявляющегося в условиях избыточной продукции гормонов, заключается в снижении экстракции йодида из крови, торможении процессов органического связывания йода, а также подавлении секреции гормонов железой. Назначение йодида с лечебной целью практикуется у больных с гиперфункцией щитовидной железы, при зобе. Избыточность ингибирующего влияния чрезмерных дозировок йодида у больных с гипертиреоидным зобом ведет к переходу гипертиреоидного состояния в эутиреоидное.

Для компенсации нарушенной функции эндокринной железы важнейшее значение имеет системный уровень регуляции, реалиизующийся с помощью механизма обратной связи. Так, регуляция функции щитовидной железы обеспечивается гипоталамо-аденогипофизарной системой с помощью пептидов: тиреолиберина гипоталамуса и тиреотропина гипофиза. Изменение уровня гормонов щитовидной железы в крови (преимущественно трийодтиронина) вызывает противоположные сдвиги в синтезе и секреции этих пептидов. При дефиците тиреоидных гормонов повышающийся по принципу обратной связи уровень тиреотропина в крови способствует активации в щитовидной железе всех биосинтетических и секреторных процессов, а также стимулирует трофику и пластические процессы, физиологическую и репаративную регенерацию, что ведет к восстановлению сниженной функции железы.

Необходимым условием регенерации железы после ее повреждения является наличие определенной концентрации в крови тиреоидных гормонов, продуцируемых поврежденными структурами железы. Это связано с тем, что гормоны щитовидной железы необходимы для процессов биосинтеза белка и деления клеток в организме. Они стимулируют регенерацию большинства тканей организма вообще и самой железы в частности. Таким образом, при полном прекращении секреции тиреоидных гормонов или снижении их концентрации в крови ниже порогового уровня регенерация железы даже при избытке тиреотропина оказывается невозможной. Если функция железы снижена в результате дефицита йода или если повреждение ее структур оказалось столь значительным, что привело к резкому уменьшению уровня тиреоидных гормонов в крови, мобилизуемый в кровь по механизму обратной связи тиреотропин вызывает не регенерацию, а компенсаторную гипертрофию железы. Следовательно, процессы регенерации будут тем слабее, чем меньше остается неповрежденной ткани (например, после резекции).

При недостаточности процессов регенерации щитовидной железы иногда возникает необходимость в их искусственной стимуляции. Искусственное управление регенерацией щитовидной железы требует экзогенного введения тщательно дозируемых оптимальных количеств тиреоидных гормонов, чтобы, с одной стороны, стимулировать процессы регенерации, а с другой - не подавить их избытком повышенной секреции тиреотропина.

Регенераторная способность высока и в других эндокринных железах, в частности в надпочечниках. Так, гиперфункция коры надпочечников, вызванная, например, избыточной стимуляцией кортикотропином гипофиза, приводит к ее гипертрофии вследствие усиления секреторного процесса. При этом происходит и перестройка структуры коры с преимущественным увеличением массы клеток пучковой зоны. Регенерация коры надпочечников есть следствие первичного повреждения ткани, и хотя при этом механизм обратной связи приводит к повышению в крови уровня кортикотропина, для полноценной регенерации необходимы и другие вещества - клеточные стимуляторы регенерации, тиреоидные гормоны, а также предшественники синтеза и метаболиты стероидных гормонов коры надпочечников. Процесс регенерации коры надпочечников развивается при различных степенях повреждения, даже при энуклеации, то есть почти полном удалении. Формирующаяся при регенерации перестройка метаболических процессов ведет к изменению количественных и качественных характеристик биосинтеза стероидных гормонов, что не только вызывает стимуляцию репаративных процессов в самой коре надпочечников, но и влияет на функции организма, нередко приводя к вторичным нарушениям. Так, следствием регенерации коры надпочечников является артериальная гипертензия. В экспериментах на животных показано, что повреждение коры надпочечников, воспроизводимое разными способами (раздавливанием, прошиванием, энуклеацией и т.п.), приводит к формированию артериальной гипертензии, получившей название «регенерационной».

Компенсация нарушенных функций эндокринных желез осуществляется и на межсистемном уровне. Так, биологическая активность секретируемых в кровь гормонов меняется в результате их связывания с транспортными белками крови. Избыточная секреция кортизола корой надпочечников ведет к увеличению в крови не только свободной, но и связанной с транскортином формы гормона, а избыточное связывание гормона с транспортными белками уменьшает его биологическую активность. Это происходит в торпидную фазу травматического шока, когда повышенная секреция кортизола сопровождается избыточным образованием связанной формы гормона. Напротив, в начальную фазу стресса («реакция тревоги» по Г. Селье) происходит высвобождение кортизола из связи с транскортином, что ведет к увеличению в крови концентрации биологически активной формы гормона и является необходимым условием защитной реакции организма. Благодаря образованию нескольких транспортных форм гормона осуществляется более значимая компенсация избыточных количеств гормона в крови. Так, при повышении концентрации кортизола в крови до уровня > 1,0 мкмоль/л часть гормона связывается также с альбумином крови.

Компенсация избыточной секреции в кровь гормонов осуществляется и через активацию их разрушения в печени, метаболических превращений в тканях-мишенях и экскреции с мочой. При не- достаточном синтезе и секреции гормонов эти процессы, напротив, протекают менее интенсивно. К компенсаторным процессам межсистемного уровня относится и изменение депонирования гормо- нов в тканях. Так, при тиреотоксикозе в миокарде снижается содержание депонированных катехоламинов, поскольку при повышенном уровне тироксина нарушаются процессы окислительного фосфорилирования, и развивается дефицит АТФ, а также тормозится активность дофадекарбоксилазы. Избыточное количество в крови тиреоидных гормонов вызывает повышение чувствительности тканей, в частности сердца, к катехоламинам. Уменьшение количества катехоламинов в миокарде, таким образом, является важным механизмом снижения влияния избыточных количеств тиреоидных гормонов на сердечную мышцу.

Компенсаторные реакции на уровне эффектора нередко подчиняются правилу исходного состояния. Сущность этого правила заключается в том, что исходное состояние функциональной активности ткани, органа или системы определяет величину и характер их реакции на раздражитель. Так, в условиях повышенной функциональной активности эффектора (включая и уровень обмена веществ) гормоны-активаторы функции могут вообще не вызывать эффекта либо вести к ослабленному или даже противоположному (то есть угнетающему) эффекту. Напротив, при ослабленной функциональной активности эффектора такие гормоны-стимуляторы вызывают, как правило, более мощный активирующий эффект. Подобной закономерности подчиняются и метаболические эффекты гормонов. Например, в условиях повышенного катаболизма белка в организме глюкокортикоиды либо теряют свой катаболический эффект, либо проявляют его несколько слабее, либо вызывают даже анаболическое действие. В механизмах реализации правила исходного состояния, наряду с действием гормонов-антагонистов и процессами саморегуляции метаболизма, существенную роль играет зависящее от функциональной активности клеток изменение количества и аффинности клеточных мембранных рецепторов гормонов.

Компенсация избытка или недостатка уровня гормонов в крови может также осуществляться на уровне тканей-мишеней посредством изменения числа и аффинности клеточных мембранных рецепторов, приводя к десенситизации клеток в условиях избытка гормонов или к их сенситизации при гормональном дефиците.

Компенсация нарушений процессов метаболизма и физиологических функций, регулируемых эндокринной железой, при недостаточности ее гормонов. Наиболее значимую роль в компенсации нарушений деятельности эндокринных желез играют компенсаторные процессы, направленные не на поддержание секреторной деятельности железы, уровня гормона в крови или его влияния на органы-мишени, а на обеспечение компенсации недостаточных или избыточных эффектов гормона, то есть компенсации нарушений регулируемых гормоном процессов - метаболических и функциональных.

Один из важнейших механизмов такой компенсации связан с наличием синергизма и антагонизма эффектов гормонов разных эндокринных желез. Так, адреналин, глюкагон, глюкокортикоиды, соматотропин повышают уровень глюкозы в крови за счет расщепления гликогена, глюконеогенеза и подавления утилизации глюкозы периферическими тканями. Инсулин противодействует этим эффектам и вызывает гипогликемию. Примерами синергизма (частичного) могут служить эффекты паратирина и кальцитриола (активация всасывания кальция в кишечнике), а антагонизма – эффекты паратирина (гиперкальциемия) и кальцитонина (гипокальциемия). Как правило, синергизм и антагонизм эффектов гормонов являются неполными, поэтому компенсация одних нарушений метаболизма и функций сопровождается усугублением других. Это особенно ярко тпроявляется в процессе формирования нарушений деятельности эндокринной железы, когда нерезкие, предпатологические отклонения функции компенсируются, а более выраженные - проявляются.

Деятельность эндокринных желез взаимозависима. Эта взаимосвязь выражается не только в изменениях синтеза и секреции гормонов одной железы под влиянием гормонов другой (например, кортикостероиды подавляют функцию щитовидной железы), но и в соответствующих процессах на уровне эффекторов (например, паратирин ингибирует антидиуретический эффект вазопрессина). Способность гормонов менять реакцию ткани-мишени на действие других гормонов и нейромедиаторов, получившая название «реактогенное действие гормонов», является одним из важных механизмов компенсации нарушенных в организме метаболических процессов и физиологических функций при патологии эндокринной системы. Так, например, при нерезком дефиците соматотропина на- рушения роста тела не происходит благодаря реактогенному дейст- вию инсулина и инсулиноподобных факторов роста, повышающих чувствительность тканей к соматотропину.


Основные механизмы нарушения функций эндокринных желез

Ветви нерва подходят к надпочечникам, выделяют ацетилхолин и вызывают усиление синтеза и секреции адреналина и норадреналина железой.

Мозговой слой надпочечников и симпатическая нервная система, будучи тесно связанными друг с другом функционально, обозначаются термином «симпато-адреналовая система». Наиболее ярко повреждение функции симпато-адреналовой системы проявляется при феохромоцитоме.

Феохромоцитома - катехоламинпродуцирующая опухоль хромаффинной ткани, локализующаяся в мозговом веществе надпочечников.

Продукция катехоламинов при феохромоцитоме повышена в десятки раз. Ведущим физиологическим механизмом нарушений при феохромоцитоме является артериальная гипертензия (возрастает уровень норадреналина).

Нервные окончания, подходящие к другим эндокринным железам, вступают в синаптические контакты с кровеносными сосудами, которые оплетают гормонпродуцирующие клетки. В этих случаях перерезка нервов или их раздражение нарушает кровоснабжение желез, тем самым опосредованно изменяя их функцию.

Второй механизм регуляции - нейроэндокринный (гипоталамический, трансгипофизарный). В данном случае регулирующее влияние ЦНС на физиологическую активность желез внутренней секреции реализуется через гипоталамус, который является конечным морфологическим образованием, обеспечивающим функциональную связь головного мозга с эндокринной системой.

Основной механизм деятельности гипоталамических нейронов - трансформация нервного импульса в специфический эндокринный процесс, который сводится к биосинтезу гормона в теле нейро- на и сбрасыванию образовавшегося секрета из окончаний аксона в кровь.

При этом осуществляется два типа нейроэндокринных реакций: один из них связан с образованием и секрецией ризилинг-факторов- главных регуляторов секреции гормонов аденогипофиза, другой - с образованием нейрогипофизарных гормонов.

В первом случае гипоталамические гормоны образуются в ядрах среднего и заднего отделов подбугровой области, затем поступают по аксонам их нейронов в область среднего возвышения, где могут накапливаться и далее проникать в специальную систему портальной циркуляции аденогипофиза. Эти высокоактивные вещества (нейросекреты, нейрогормоны) избирательно регулируют гормонообразовательные процессы аденогипофиза.

По направленности эффекта гипоталамические рилизинг-факторы делятся на гипофизарные либерины и статины.

Изменение центральной эндокринной регуляции может быть связано с первичным изменением выработки рилизинг-факторов или тропных гормонов, в результате которого возникают вторичные нарушения функции эндокринной железы (вторичные эндокринопатии). Эндокринопатии, вызванные прямым повреждением ткани железы, получили название первичных.

Во втором случае гормоны образуются в ядрах переднего гипоталамуса, спускаются по аксонам в заднюю долю гипофиза, где депонируются, а оттуда могут поступать в системную циркуляцию и действовать на периферические органы (вазопрессин, АДГ и окситоцин).

Нарушение эндокринных механизмов регуляции

Эндокринная регуляция связана с непосредственным влиянием одних гормонов на биосинтез и секрецию других. Гормональную регуляцию эндокринных функций осуществляет несколько групп гормонов.

Особую роль в гормональной регуляции многих эндокринных функций играет передняя доля гипофиза. В различных ее клетках образуется ряд тропных гормонов (АКТГ, ТТГ, ЛГ, СТГ), основное значение которых сводится к направленной стимуляции функций и трофики некоторых периферических эндокринных желез (кора надпочечников, щитовидная железа, гонады). Все тропные гормоны имеют белково-пептидную природу (олигопептиды, простые белки, гликопротеиды).

После экспериментального хирургического удаления гипофиза зависимые от него периферические железы подвергаются гипотрофии, в них резко снижается гормональный биосинтез. Следствием этого является подавление процессов, регулируемых соответствующими периферическими железами. Аналогичная картина наблюдается у человека при полной недостаточности функции гипофиза (болезнь Симмондса). Введение тропных гормонов животным после гипофизэктомии постепенно восстанавливает структуру и функцию зависимых от гипофиза эндокринных желез.

К негипофизарным гормонам, непосредственно регулирующим периферические эндокринные железы, относятся, в частности, глюкагон (гормон а-клеток поджелудочной железы, который наряду с влиянием на углеводный и липидный обмен в периферических тканях может оказывать прямое стимулирующее действие на Р-клетки той же железы, вырабатывающие инсулин) и инсулин (непосредственно контролирует секрецию катехоламинов надпочечниками и СТГ гипофизом).

Нарушения в системе обратной связи

В механизмах регуляции «гормон-гормон» существует сложная система регуляторных взаимосвязей - как прямых (нисходящих), так и обратных (восходящих).

Разберем механизм обратной связи на примере системы «гипоталамус-гипофиз-периферические железы».

Прямые связи начинаются в гипофизотропных областях гипоталамуса, которые получают по афферентным путям мозга внешние сигналы к запуску системы.

Гипоталамический стимул в форме определенного рилизинг-фактора передается в переднюю долю гипофиза, где усиливает или ослабляет секрецию соответствующего тропного гормона. Последний в повышенных или сниженных концентрациях через системную циркуляцию поступает к регулируемой им периферической эндокринной железе и изменяет ее секреторную функцию.

Обратные связи могут исходить как от периферической железы (наружная обратная связь), так и от гипофиза (внутренняя обратная связь). Восходящие наружные связи заканчиваются в гипо- таламусе и гипофизе.

Так, половые гормоны, кортикоиды, тиреоидные гормоны могут оказывать через кровь обратное влияние и на регулирующие их области гипоталамуса, и на соответствующие тропные функции гипофиза.

Важное значение в процессах саморегуляции имеют также внутренние обратные связи, идущие от гипофиза к соответствующим гипоталамическим центрам.

Таким образом, гипоталамус:

С одной стороны, принимает сигналы извне и посылает приказы по линии прямой связи к регулируемым эндокринным железам;

С другой стороны, реагирует на сигналы, идущие изнутри системы от регулируемых желез по принципу обратной связи.

По направленности физиологического действия обратные связи могут быть отрицательными и положительными. Первые как бы самоограничивают, самокомпенсируют работу системы, вторые самозапускают ее.

При удалении периферической железы, регулируемой гипофизом, или при ослаблении ее функции секреция соответствующего тропного гормона возрастает. И наоборот: усиление ее функции приводит к торможению секреции тропного гормона.

Процесс саморегуляции функции желез по механизму обратной связи всегда нарушается при любой форме патологии эндокринной системы. Классическим примером может служить атрофия коры надпочечников при длительном лечении кортикостероидами (в первую очередь, глюкокортикоидными гормонами). Объясняется это тем, что глюкокортикоиды (кортикостерон, кортизол и их аналоги):

Являются мощными регуляторами углеводного и белкового обмена, вызывают повышение концентрации глюкозы в крови, тормозят синтез белка в мышцах, соединительной ткани и лимфоидной ткани (катаболический эффект);

Стимулируют образование белка в печени (анаболический эффект);

Повышают резистентность организма к различным раздражителям (адаптивный эффект);

Обладают противовоспалительным и десенсибилизирующим действием (в больших дозах);

Являются одним из факторов, поддерживающих артериальное давление, количество циркулирующей крови и нормальную проницаемость капилляров.

Указанные эффекты глюкокортикоидов обусловили их широкое клиническое применение при заболеваниях, в основе патогенеза которых лежат аллергические процессы либо воспаление. В этих случаях вводимый извне гормон по механизму обратной связи тормозит функцию соответствующей железы, но при длительном введении приводит к ее атрофии. Поэтому больные, прекратившие лечение препаратами глюкокортикоидных гормонов, попадая в ситуацию, когда под влиянием повреждающих факторов (операция, бытовая травма, интоксикация) у них развивается стрессовое состояние, не отвечают адекватным усилением секреции собственных кортикостероидов. В результате у них может развиться острая надпочечниковая недостаточность, которая сопровождается сосудистым коллапсом, судорогами, развитием комы. Смерть у таких больных может наступить через 48 часов (при явлениях глубокой комы и сосудистого коллапса). Аналогичная картина может наблюдаться при кровоизлиянии в надпочечники.

Значение механизма обратной связи для организма можно рассмотреть также на примере викарной гипертрофии одного из надпочечников после хирургического удаления второго (односторонняя адреналэктомия). Такая операция вызывает быстрое падение уровня кортикостероидов в крови, что усиливает через гипоталамус адренокортикотропную функцию гипофиза и приводит к повышению концентрации АКТГ в крови, следствием которого является компенсаторная гипертрофия оставшегося надпочечника.

Длительный прием тиреостатиков (или антитиреоидных веществ), подавляющих биосинтез гормонов щитовидной железы (метилурацил, мерказолил, сульфаниламиды), вызывает усиление секреции тиреотропного гормона, а это, в свою очередь, обусловливает разрастание железы и развитие зоба.

Важную роль механизм обратной связи играет также в патогенезе адреногенитального синдрома.

Неэндокринная (гуморальная) регуляция

Неэндокринная (гуморальная) регуляция - регулирующее действие на эндокринные железы некоторых негормональных метаболитов.

Этот способ регуляции в большинстве случаев является, по существу, самонастройкой эндокринной функции. Так, глюкоза, гуморально действуя на эндокринные клетки, изменяет интенсивность продукции инсулина и глюкагона поджелудочной железой, адреналина мозговым слоем надпочечников, СТГ аденогипофизом. Уровень секреции паратгормона околощитовидными железами и кальцитонина щитовидной железой, контролирующих кальциевый обмен, в свою очередь, регулируется концентрацией ионов кальция в крови. Интенсивность биосинтеза альдостерона корой надпочечников обусловлена уровнем ионов натрия и калия в крови.

Неэндокринная регуляция эндокринных процессов представляет собой один из важнейших способов поддержания метаболического гомеостаза.

Для ряда желез (а- и (3-клетки островкового аппарата поджелудочной железы, околощитовидные железы) гуморальная регуляция негормональными агентами по принципу самонастройки имеет первостепенное физиологическое значение.

Особый интерес приобретает образование негормональных факторов стимуляции деятельности эндокринных желез в условиях патологии. Так, при некоторых формах тиреотоксикоза и воспаления щитовидной железы (тиреоидит) в крови больных появляется длительно действующий тиреоидный стимулятор (longactingthyroidstimulator - LATS.

LATS представлен гормонально активными аутоантителами (IgG), вырабатываемыми к патологическим компонентам (аутоантигенам) клеток щитовидной железы. Аутоантитела, избирательно связываясь с клетками щитовидной железы, специфически стимулируют в ней процессы секреции тиреоидных гормонов, приводя к развитию патологической гиперфункции. Они действуют аналогично ТТГ, усиливая процессы синтеза и секреции щитовидной железой тироксина и трийодтиронина.

Не исключено, что аналогичные метаболиты могут образовываться и к специфическим белкам других эндокринных желез, вызывая нарушение их функции.

Периферические (внежелезистые) механизмы регуляции

Функция той или иной эндокринной железы зависит также от величины концентрации гормонов в крови, уровня их резервирования комплексообразующими (связывающими) системами крови, скорости их захвата периферическими тканями. В развитии многих эндокринных заболеваний весьма значительную роль могут играть:

1) нарушение инактивации гормонов в тканях и

2) нарушение связывания гормонов белками;

3) образование антител к гормону;

4) нарушение соединения гормона с соответствующими ре- цепторами в клетках-мишенях;

5) наличие антигормонов и их действие на рецепторы по меха- низму конкурентного связывания.

Антигормоны - вещества (в том числе гормоны), имеющие сродство к рецепторам данного гормона и взаимодействующие с ними. Занимая рецепторы, они блокируют эффект данного гормона.

Патологические процессы в железе – эндокринопатии

Одной из причин нарушения нормальных взаимодействий в эндокринной системе являются патологические процессы в самих эндокринных железах, вследствие прямого поражения одной или нескольких из них. В патологических условиях возможно несколько вариантов нарушения деятельности эндокринных желез:

1) не соответствующая потребностям организма чрезмерно высокая инкреция (гиперфункция);

2) не соответствующая потребностям организма чрезмерно низкая инкреция (гипофункция);

3) качественное нарушение гормонообразования в железе, качественное нарушение инкреции (дисфункция).

Ниже приведена классификация эндокринопатии.

1. По характеру изменения функции: гиперфункция, гипофункция, дисфункция, эндокринные кризы.

Дисфункция - нарушение соотношений между гормонами, выделяемыми одной и той же железой. Примером может служить нарушение соотношений между эстрогенами и прогестероном, считающееся важным фактором патогенеза фибромиомы матки.

Эндокринные кризы - острые проявления эндокринной патологии - могут быть гипер- и гипофункциональными (тиреотоксичекий криз, гипотиреоидная кома и др.).

2.По происхождению: первичные (развивающиеся в результате первичного повреждения ткани железы) и вторичные (развивающиеся в результате первичного повреждения гипоталамуса).

Физиология внутренней секреции — раздел , который изучает закономерности синтеза, секреции, транспорта физиологически активных веществ и механизмы их действия на организм.

Либерины и статины

Регуляция секреции гипофизарных гормонов

Тройные гормоны (АКТГ, ТТГ, ФСГ, ЛГ, ЛТГ)

Регуляция деятельности щитовидной, половых желез и надпочечников

Гормон роста

Регуляция роста организма, стимуляция белкового синтеза

Вазопрессин (антидиуретический гормон)

Влияет на интенсивность мочевыделения,регулируя количество выделяемой организмом воды

Тиреоидные (йодосодержащие) гормоны — тироксин и др.

Повышают интенсивность энергетического обмена и роста организма, стимуляция рефлексов

Кальцитонин

Контролирует обмен кальция в организме, "сберегая" его в костях

Паратгормон

Регулирует концентрацию в крови кальция

Поджелудочная железа (островки Лангерганса)

Снижение уровня глюкозы в крови, стимуляция печени на превращение глюкозы в гликоген для запасания, ускорение транспорта глюкозы в клетки (кроме нервных клеток)

Глюкагон

Повышение уровня глюкозы в крови, стимулирует быстрое расщепление гликогена до глюкозы в печени и превращение белков и жиров в глюкозу

Мозговой спой:

  • Адреналин
  • Норадреналин

Повышение уровня глюкозы в крови (поступление из печени дня покрытия энергетических затрат); стимуляция сердцебиения, ускорение дыхания и повышение кровяного давления

Корковый слой

  • Глюкокортикоиды (кортизон)

Одновременное повышение глюкозы в крови и синтеза гликогена в печени влияют 10 жировой и белковый обмен (расцепление белков) Устойчивость к стрессу, противовоспалительное действие

  • Альдостерон

Увеличение натрия в крови, задержка жидкости в организме, увеличение кровяного давления

Половые железы

Эстрогены /женские половые гормоны), андрогены (мужские половые

Обеспечивают половую функцию организма, развитие вторичных половых признаков

Свойства, классификация, синтез и транспорт гормонов

Гормоны — вещества, выделяемые специализированными эндокринными клетками желез внутренней секреции в кровь и оказывающие специфическое действие на ткани-мишени. Тканями-мишенями называются ткани, обладающие очень высокой чувствительностью к определенным гормонам. Например, для тестостерона (мужского полового гормона) органом-мишенью являются семенники, а для окситоцина — миоэпителий молочных желез и гладкие мышцы матки.

Гормоны могут оказывать несколько эффектов на организм:

  • метаболический эффект , проявляющийся в изменении активности синтеза ферментов в клетке и в повышении проницаемости мембран клеток для данного гормона. При этом изменяется метаболизм в тканях и органах-мишенях;
  • морфогенетичеекий эффект , заключающийся в стимуляции роста, дифференцировки и метаморфоза организма. В этом случае происходят изменения в организме на генетическом уровне;
  • кинетический эффект заключается в активации определенной деятельности исполнительных органов;
  • коррегирующий эффект проявляется изменением интенсивности функций органов и тканей даже в отсутствие гормона;
  • реактогенный эффект связан с изменением реактивности ткани к действию других гормонов.

Таблица. Характеристика гормональных эффектов


Существует несколько вариантов классификации гормонов. По химической природе гормоны подразделяются на три группы: полипептидные и белковые, стероидные и производные аминокислоты тирозина.

По функциональному значению гормоны также подразделяют на три группы:

  • эффекторные, действующие непосредственно на органы-мишени;
  • тропные, которые вырабатываются в гипофизе и стимулируют синтез и выделение эффекторных гормонов;
  • регулирующие синтез тропных гормонов (либерины и статины), которые выделяются нейросекреторными клетками гипоталамуса.

Гормоны, имеющие различную химическую природу, обладают общими биологическими свойствами: дистантностью действия, высокой специфичностью и биологической активностью.

Стероидные гормоны и производные аминокислот не обладают видовой специфичностью и оказывают одинаковое действие на животных разных видов. Белковые и пептидные гормоны обладают видовой специфичностью.

Белково-пептидные гормоны синтезируются в рибосомах эндокринной клетки. Синтезированный гормон окружается мембранами и выходит в виде везикулы к плазматической мембране. По мере продвижения везикулы гормон в ней «дозревает». После слияния с плазматической мембраной везикула разрывается и гормон выделяется в окружающую среду (экзоцитоз). В среднем период от начала синтеза гормонов до их появления в местах секреции составляет 1-3 ч. Белковые гормоны хорошо растворимы в крови и не требуют специальных переносчиков. Они разрушаются в крови и тканях с участием специфических ферментов — протеиназ. Полупериод их жизни в крови составляет не более 10-20 мин.

Стероидные гормоны синтезируются из холестерина. Полупериод их жизни находится в пределах 0,5-2 ч. Для этих гормонов имеются специальные переносчики.

Катехоламины синтезируются из аминокислоты тирозина. Полупериод их жизни очень короткий и не превышает 1-3 мин.

Кровь, лимфа и межклеточная жидкость транспортируют гормоны в свободном и связанном виде. В свободном виде переносится 10% гормона; в связанном с белками крови — 70-80% и в адсорбированном на форменных элементах крови — 5-10% гормона.

Активность связанных форм гормонов очень низкая, так как они не могут взаимодействовать со специфическими для них рецепторами на клетках и тканях. Высокой активностью обладают гормоны, находящиеся в свободном виде.

Разрушаются гормоны под влиянием ферментов в печени, почках, в тканях-мишенях и самих эндокринных железах. Выводятся гормоны из организма через почки, потовые и слюнные железы, а также желудочно-кишечный тракт.

Регуляция деятельности желез внутренней секреции

В регуляции деятельности желез внутренней секреции принимают участие нервная и гуморальная системы.

Гуморальная регуляция — регуляция при помощи различных классов физиологически активных веществ.

Гормональная регуляция — часть гуморальной регуляции, включающая регуляторные эффекты классических гормонов.

Нервная регуляция осуществляется в основном через и выделяемые им нейрогормоны. Нервные волокна, иннервирующие железы, влияют только на их кровоснабжение. Поэтому секреторная активность клеток может изменяться только под влиянием определенных метаболитов и гормонов.

Гуморальная регуляция осуществляется посредством нескольких механизмов. Во-первых, прямое влияние на клетки железы может оказывать концентрация определенного вещества, уровень которого регулируется данным гормоном. Например, секреция гормона инсулина увеличивается при повышении в крови концентрации глюкозы. Во-вторых, деятельность одной железы внутренней секреции могут регулировать другие железы внутренней секреции.

Рис. Единство нервной и гуморальной регуляции

В связи с тем что основная часть нервных и гуморальных путей регуляции сходится на уровне гипоталамуса, в организме образуется единая нейроэндокринная регуляторная система. И основные связи между нервной и эндокринной системами регуляции осуществляются посредством взаимодействия гипоталамуса и гипофиза. Нервные импульсы, поступающие в гипоталамус, активируют секрецию рилизинг-факторов (либеринов и статинов). Органом-мишенью для либеринов и статинов является передняя доля гипофиза. Каждый из либеринов взаимодействует с определенной популяцией клеток аденогипофиза и вызывает в них синтез соответствующих гормонов. Статины оказывают на гипофиз противоположное действие, т.е. подавляют синтез определенных гормонов.

Таблица. Сравнительная характеристика нервной и гормональной регуляции

Примечание. Оба вида регуляции взаимосвязаны и влияют друг на друга, образуя единый скоординированный механизм нервно-гуморальной регуляции при ведущей роли нервной системы

Рис. Взаимодействие желез внутренней секреции и нервной системы

Взаимосвязи в эндокринной системе могут происходить и по принципу «плюс-минус взаимодействия». Этот принцип впервые был предложен М. Завадовским. Согласно этому принципу, железа, продуцирующая гормон в избыточном количестве, оказывает тормозящее действие на его дальнейшее выделение. И наоборот, недостаток определенного гормона способствует усилению его секреции железой. В кибернетике такая связь называется «обратной отрицательной связью». Эта регуляция может осуществляться на разных уровнях с включением длинной или короткой обратной связи. Факторами, подавляющими выделение какого-либо гормона, могут быть концентрация в крови непосредственно гормона или продуктов его метаболизма.

Эндокринные железы взаимодействуют и по типу положительной связи. При этом одна железа стимулирует другую и получает от нее активирующие сигналы. Такие взаимосвязи типа «плюс-плюс взаимодействия» способствуют оптимизации метаболима и быстрому выполнению жизненно важного процесса. При этом, после достижения оптимального результата, для предотвращения гиперфункции желез включается система «минус взаимодействия». Смена таких взаимосвязей систем постоянно происходит в организме животных.

Частная физиология желез внутренней секреции

Гипоталамус

Это центральная структура нервной системы , регулирующая эндокринные функции. расположен в и включает преоптическую область, область перекреста зрительных нервов, воронку и мамиллярные тела. Кроме того, в нем выделяют до 48 парных ядер.

В гипоталамусе существует два типа нейросекреторных клеток. В супрахиазматических и паравентрикулярных ядрах гипоталамуса содержатся нервные клетки, соединяющиеся аксонами с задней долей гипофиза (нейрогипофиз). В клетках этих нейронов синтезируются гормоны: вазопрессин, или антидиуретический гормон, и окситоцин, которые затем по аксонам этих клеток поступают в нейрогипофиз, где и накапливаются.

Клетки второго типа расположены в нейросекреторных ядрах гипоталамуса и имеют короткие аксоны, не выходящие за пределы гипоталамуса.

В клетках этих ядер синтезируются пептиды двух видов: одни стимулируют образование и выделение гормонов аденогипофиза и называются рилизинг-гормонами (или либеринами), другие тормозят образование гормонов аденогипофиза и называются статинами.

К либеринам относятся: тиреолиберин, соматолиберин, люлиберин, пролактолиберин, меланолиберин, кортиколиберин, а к статинам — соматостатин, пролактостатин, меланостатин. Либерины и статины поступают путем аксонного транспорта в срединное возвышение гипоталамуса и выделяются в кровь первичной сети капилляров, образованной разветвлениями верхней гипофизарной артерии. Затем с током крови они поступают во вторичную сеть капилляров, расположенную в аденогипофизе, и влияют на его секреторные клетки. Через эту же капиллярную сеть гормоны аденогипофиза поступают в кровоток и достигают периферических эндокринных желез. Эта особенность кровообращения гипоталамо-гипофизарной области получила название портальной системы.

Гипоталамус и гипофиз объединяются в единую , которая регулирует деятельность периферических желез внутренней секреции.

Секреция тех или иных гормонов гипоталамуса определяется конкретной ситуацией, которая формирует характер прямых и опосредованных влияний на нейросекреторные структуры гипоталамуса.

Гипофиз

Расположен в ямке турецкого седла основной кости и при помощи ножки связан с основанием мозга. состоит из трех долей: передней (аденогипофиз), промежуточной и задней (нейрогипофиз).

Все гормоны передней доли гипофиза представляют собой белковые вещества. Продукция ряда гормонов передней доли гипофиза регулируется с помощью либеринов и статинов.

В аденогипофизе вырабатывается шесть гормонов.

Соматотропный гормон (СТГ, ) стимулирует синтез белка в органах и тканях и регулирует рост молодняка. Под его влиянием усиливается мобилизация жира из депо и использование его в энергетическом обмене. При недостатке гормона роста в детском возрасте происходит задержка роста, и человек вырастает карликом, а при избыточной его продукции развивается гигантизм. Если выработка СТГ усиливается во взрослом состоянии, увеличиваются те части тела, которые еще способны расти, — пальцы рук и ног, кисти, стопы, нос и нижняя челюсть. Это заболевание называется акромегалией. Выделение соматотропного гормона из гипофиза стимулируется соматолиберином, а тормозится соматостатином.

Пролактин (лютеотропный гормон) стимулирует рост молочных желез и в период лактации усиливает секрецию ими молока. В обычных условиях регулирует рост и развитие желтого тела и фолликулов в яичниках. В мужском организме влияет на образование андрогенов и спермиогенез. Стимуляция секреции пролактина осуществляется посредством пролактолиберина, а снижение секреции пролактина — пролактостатином.

Адренокортикотропный гормон (АКТГ) вызывает разрастание пучковой и сетчатой зон коры надпочечников и усиливает синтез их гормонов — глюкокортикоидов и минералокортикоидов. АКТГ также активирует липолиз. Выделение АКТГ из гипофиза стимулирует кортиколиберин. Синтез АКТГ усиливается при болевых ощущениях, стрессовых состояниях, физической нагрузке.

Тиреотропный гормон (ТТГ) стимулирует функцию щитовидной железы и активирует синтез тиреоидных гормонов. Выделение из гипофиза ТТГ регулируется тиреолиберином гипоталамуса, норадреналином, эстрогенами.

Фомикулостимулирующий гормон (ФСГ) стимулирует рост и развитие фолликулов в яичниках и участвует в спермиогенезе у самцов. Относится к гонадотропным гормонам.

Лютеинизирующий гормон (ЛГ), или лютропин, способствует овуляции фолликулов у самок, поддерживает функционирование желтого тела и нормальное протекание беременности, участвует в спер- миогенезе у самцов. Также является гонадотропным гормоном. Образование и выделение ФСГ и ЛГ из гипофиза стимулирует гонадолиберин.

В средней доле гипофиза образуется меланоцитостимулирующий гормон (МСГ), основной функцией которого является стимуляция синтеза пигмента меланина, а также регуляция размеров и числа пигментных клеток.

В задней доле гипофиза гормоны не синтезируются, а попадают сюда из гипоталамуса. В нейрогипофизе накапливается два гормона: антидиуретическии (АДГ), или вазон рессин, и окситоцин.

Под влиянием АДГ снижается диурез и регулируется питьевое поведение. Вазопрессин увеличивает реабсорбцию воды в дистальных отделах нефрона путем повышения проницаемости для воды стенок дистальных извитых канальцев и собирательных трубок, оказывая тем самым антидиуретическое действие. Путем изменения объема циркулирующей жидкости АДГ регулирует осмотическое давление жидких сред организма. В больших концентрациях он вызывает сокращение артериол, что приводит к повышению артериального давления.

Окситоцин стимулирует сокращение гладких мышц матки и регулирует течение родового акта, а также влияет на выделение молока, усиливая сокращения миоэпителиальных клеток в молочных железах. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза и молокоотдаче. У самцов он обеспечивает рефлекторное сокращение семявыводящих протоков при семяизвержении.

Эпифиз

Простагландин Е1 и особенно простациклин: угнетение адгезии тромбоцитов, предупреждение образования сосудистых тромбов

Простагландин Е2: стимулирование адгезии тромбоцитов

Увеличение кровотока в почках, увеличение выделения мочи и электролитов. Антагонизм с прессорной системой почки

Репродуктивная система

Усиление сокращения матки при беременности. Контрацептивное действие. Стимуляция родов и прерывание беременности. Повышение подвижности сперматозоидов

Центральная нервная система

Раздражение центров терморегуляции, лихорадка, пульсирующая головная боль

Нарушение эндокринных механизмов регуляции

Эндокринная регуляция связана с непосредственным влиянием одних гормонов на биосинтез и секрецию других. Гормональную регуляцию эндокринных функций осуществляет несколько групп гормонов.

Особую роль в гормональной регуляции многих эндокринных функций играет передняя доля гипофиза. В различных ее клетках образуется ряд тропных гормонов (АКТГ, ТТГ, ЛГ, СТГ), основное значение которых сводится к направленной стимуляции функций и трофики некоторых периферических эндокринных желез (кора надпочечников, щитовидная железа, гонады). Все тропные гормоны имеют белково-пептидную природу (олигопептиды, простые белки, гликопротеиды).

После экспериментального хирургического удаления гипофиза зависимые от него периферические железы подвергаются гипотрофии, в них резко снижается гормональный биосинтез. Следствием этого является подавление процессов, регулируемых соответствующими периферическими железами. Аналогичная картина наблюдается у человека при полной недостаточности функции гипофиза (болезнь Симмондса). Введение тропных гормонов животным после гипофизэктомии постепенно восстанавливает структуру и функцию зависимых от гипофиза эндокринных желез.

К негипофизарным гормонам, непосредственно регулирующим периферические эндокринные железы, относятся, в частности, глюкагон (гормон а-клеток поджелудочной железы, который наряду с влиянием на углеводный и липидный обмен в периферических тканях может оказывать прямое стимулирующее действие на Р-клетки той же железы, вырабатывающие инсулин) и инсулин (непосредственно контролирует секрецию катехоламинов надпочечниками и СТГ гипофизом).

Нарушения в системе обратной связи

В механизмах регуляции «гормон-гормон» существует сложная система регуляторных взаимосвязей - как прямых (нисходящих), так и обратных (восходящих).

Разберем механизм обратной связи на примере системы «гипоталамус-гипофиз-периферические железы».

Прямые связи начинаются в гипофизотропных областях гипоталамуса, которые получают по афферентным путям мозга внешние сигналы к запуску системы.

Гипоталамический стимул в форме определенного рилизинг-фактора передается в переднюю долю гипофиза, где усиливает или ослабляет секрецию соответствующего тропного гормона. Последний в повышенных или сниженных концентрациях через системную циркуляцию поступает к регулируемой им периферической эндокринной железе и изменяет ее секреторную функцию.

Обратные связи могут исходить как от периферической железы (наружная обратная связь), так и от гипофиза (внутренняя обратная связь). Восходящие наружные связи заканчиваются в гипо- таламусе и гипофизе.

Так, половые гормоны, кортикоиды, тиреоидные гормоны могут оказывать через кровь обратное влияние и на регулирующие их области гипоталамуса, и на соответствующие тропные функции гипофиза.

Важное значение в процессах саморегуляции имеют также внутренние обратные связи, идущие от гипофиза к соответствующим гипоталамическим центрам.

Таким образом, гипоталамус:

С одной стороны, принимает сигналы извне и посылает приказы по линии прямой связи к регулируемым эндокринным железам;

С другой стороны, реагирует на сигналы, идущие изнутри системы от регулируемых желез по принципу обратной связи.

По направленности физиологического действия обратные связи могут быть отрицательными и положительными. Первые как бы самоограничивают, самокомпенсируют работу системы, вторые самозапускают ее.

При удалении периферической железы, регулируемой гипофизом, или при ослаблении ее функции секреция соответствующего тропного гормона возрастает. И наоборот: усиление ее функции приводит к торможению секреции тропного гормона.

Процесс саморегуляции функции желез по механизму обратной связи всегда нарушается при любой форме патологии эндокринной системы. Классическим примером может служить атрофия коры надпочечников при длительном лечении кортикостероидами (в первую очередь, глюкокортикоидными гормонами). Объясняется это тем, что глюкокортикоиды (кортикостерон, кортизол и их аналоги):

Являются мощными регуляторами углеводного и белкового обмена, вызывают повышение концентрации глюкозы в крови, тормозят синтез белка в мышцах, соединительной ткани и лимфоидной ткани (катаболический эффект);

Стимулируют образование белка в печени (анаболический эффект);

Повышают резистентность организма к различным раздражителям (адаптивный эффект);

Обладают противовоспалительным и десенсибилизирующим действием (в больших дозах);

Являются одним из факторов, поддерживающих артериальное давление, количество циркулирующей крови и нормальную проницаемость капилляров.

Указанные эффекты глюкокортикоидов обусловили их широкое клиническое применение при заболеваниях, в основе патогенеза которых лежат аллергические процессы либо воспаление. В этих случаях вводимый извне гормон по механизму обратной связи тормозит функцию соответствующей железы, но при длительном введении приводит к ее атрофии. Поэтому больные, прекратившие лечение препаратами глюкокортикоидных гормонов, попадая в ситуацию, когда под влиянием повреждающих факторов (операция, бытовая травма, интоксикация) у них развивается стрессовое состояние, не отвечают адекватным усилением секреции собственных кортикостероидов. В результате у них может развиться острая надпочечниковая недостаточность, которая сопровождается сосудистым коллапсом, судорогами, развитием комы. Смерть у таких больных может наступить через 48 часов (при явлениях глубокой комы и сосудистого коллапса). Аналогичная картина может наблюдаться при кровоизлиянии в надпочечники.

Значение механизма обратной связи для организма можно рассмотреть также на примере викарной гипертрофии одного из надпочечников после хирургического удаления второго (односторонняя адреналэктомия). Такая операция вызывает быстрое падение уровня кортикостероидов в крови, что усиливает через гипоталамус адренокортикотропную функцию гипофиза и приводит к повышению концентрации АКТГ в крови, следствием которого является компенсаторная гипертрофия оставшегося надпочечника.

Длительный прием тиреостатиков (или антитиреоидных веществ), подавляющих биосинтез гормонов щитовидной железы (метилурацил, мерказолил, сульфаниламиды), вызывает усиление секреции тиреотропного гормона, а это, в свою очередь, обусловливает разрастание железы и развитие зоба.

Важную роль механизм обратной связи играет также в патогенезе адреногенитального синдрома.

Неэндокринная (гуморальная) регуляция

Неэндокринная (гуморальная) регуляция - регулирующее действие на эндокринные железы некоторых негормональных метаболитов.

Этот способ регуляции в большинстве случаев является, по существу, самонастройкой эндокринной функции. Так, глюкоза, гуморально действуя на эндокринные клетки, изменяет интенсивность продукции инсулина и глюкагона поджелудочной железой, адреналина мозговым слоем надпочечников, СТГ аденогипофизом. Уровень секреции паратгормона околощитовидными железами и кальцитонина щитовидной железой, контролирующих кальциевый обмен, в свою очередь, регулируется концентрацией ионов кальция в крови. Интенсивность биосинтеза альдостерона корой надпочечников обусловлена уровнем ионов натрия и калия в крови.

Неэндокринная регуляция эндокринных процессов представляет собой один из важнейших способов поддержания метаболического гомеостаза.

Для ряда желез (а- и (3-клетки островкового аппарата поджелудочной железы, околощитовидные железы) гуморальная регуляция негормональными агентами по принципу самонастройки имеет первостепенное физиологическое значение.

Особый интерес приобретает образование негормональных факторов стимуляции деятельности эндокринных желез в условиях патологии. Так, при некоторых формах тиреотоксикоза и воспаления щитовидной железы (тиреоидит) в крови больных появляется длительно действующий тиреоидный стимулятор (longactingthyroidstimulator - LATS.

LATS представлен гормонально активными аутоантителами (IgG), вырабатываемыми к патологическим компонентам (аутоантигенам) клеток щитовидной железы. Аутоантитела, избирательно связываясь с клетками щитовидной железы, специфически стимулируют в ней процессы секреции тиреоидных гормонов, приводя к развитию патологической гиперфункции. Они действуют аналогично ТТГ, усиливая процессы синтеза и секреции щитовидной железой тироксина и трийодтиронина.

Не исключено, что аналогичные метаболиты могут образовываться и к специфическим белкам других эндокринных желез, вызывая нарушение их функции.

Периферические (внежелезистые) механизмы регуляции

Функция той или иной эндокринной железы зависит также от величины концентрации гормонов в крови, уровня их резервирования комплексообразующими (связывающими) системами крови, скорости их захвата периферическими тканями. В развитии многих эндокринных заболеваний весьма значительную роль могут играть:

1) нарушение инактивации гормонов в тканях и

2) нарушение связывания гормонов белками;

3) образование антител к гормону;

4) нарушение соединения гормона с соответствующими ре- цепторами в клетках-мишенях;

5) наличие антигормонов и их действие на рецепторы по меха- низму конкурентного связывания.

Антигормоны - вещества (в том числе гормоны), имеющие сродство к рецепторам данного гормона и взаимодействующие с ними. Занимая рецепторы, они блокируют эффект данного гормона.

Патологические процессы в железе – эндокринопатии

Одной из причин нарушения нормальных взаимодействий в эндокринной системе являются патологические процессы в самих эндокринных железах, вследствие прямого поражения одной или нескольких из них. В патологических условиях возможно несколько вариантов нарушения деятельности эндокринных желез:

1) не соответствующая потребностям организма чрезмерно высокая инкреция (гиперфункция);

2) не соответствующая потребностям организма чрезмерно низкая инкреция (гипофункция);

3) качественное нарушение гормонообразования в железе, качественное нарушение инкреции (дисфункция).

Ниже приведена классификация эндокринопатии.

1. По характеру изменения функции: гиперфункция, гипофункция, дисфункция, эндокринные кризы.

Дисфункция - нарушение соотношений между гормонами, выделяемыми одной и той же железой. Примером может служить нарушение соотношений между эстрогенами и прогестероном, считающееся важным фактором патогенеза фибромиомы матки.

Эндокринные кризы - острые проявления эндокринной патологии - могут быть гипер- и гипофункциональными (тиреотоксичекий криз, гипотиреоидная кома и др.).

2.По происхождению: первичные (развивающиеся в результате первичного повреждения ткани железы) и вторичные (развивающиеся в результате первичного повреждения гипоталамуса).

3.По распространенности нарушений: моногландулярные и полигландулярные.

Железы внутренней секреции. В регуляции функций организма важная роль принадлежит эндокринной системе. Органы этой системы- железы внутренней секреции - выделяют особые вещества, оказывающие существенное и специализированное влияние на обмен веществ, структуру и функцию органов и тканей. Железы внутренней секреции отличаются от других желез, имеющих выводные протоки (желез внешней секреции), тем, что выделяют продуцируемые ими вещества прямо в кровь. Поэтому их называютэндокринными железами (греч. endon - внутри, krinein - выделять) (рис. 26).

К железам внутренней секреции относятся гипофиз, эпифиз, поджелудочная железа, щитовидная железа, надпочечники, половые, паращитовидные или околощитовидные железы, вилочковая (зобная) железа.
Поджелудочная и половые железы - смешанные, так как часть их клеток выполняет внешнесекреторную функцию, другая часть - внутрисекреторную. Половые железы вырабатывают не только половые гормоны, но и половые клетки (яйцеклетки и сперматозоиды). Часть клеток поджелудочной железы вырабатывает гормон инсулин и глюкагон, другие ее клетки вырабатывают пищеварительный и поджелудочный сок.
Эндокринные железы человека невелики по размерам, имеют очень небольшую массу (от долей грамма до нескольких граммов), богато снабжены кровеносными сосудами. Кровь приносит к ним необходимый строительный материал и уносит химически активные секреты.
К эндокринным железам подходит разветвленная сеть нервных волокон, их деятельность постоянно контролирует нервная система.
Железы внутренней секреции функционально тесно связаны между собой, и поражение одной железы вызывает нарушение функции других желез.
Гормоны. Специфические активные вещества, вырабатываемые железами внутренней секреции, называются гормонами (от греч. horman -возбуждать). Гормоны обладают высокой биологической активностью.
Гормоны сравнительно быстро разрушаются тканями, поэтому для обеспечения длительного действия необходимо их постоянное выделение в кровь. Только в этом случае возможно поддержание постоянной концентрации гормонов в крови.
Гормоны обладают относительной видовой специфичностью, что имеет важное значение, так как позволяет недостаток того или иного гормона в организме человека компенсировать введением гормональных препаратов, получаемых из соответствующих желез животных. В настоящее время удалось не только выделить многие гормоны, но даже получить некоторые из них синтетическим путем.
Гормоны действуют на обмен веществ, регулируют клеточную активность, способствуют проникновению продуктов обмена веществ через клеточные мембраны. Гормоны влияют на дыхание, кровообращение, пищеварение, выделение; с гормонами связана функция размножения.
Рост и развитие организма, смена различных возрастных периодов связаны с деятельностью желез внутренней секреции.
Механизм действия гормонов до конца не изучен. Считают, что гормоны действуют на клетки органов и тканей, взаимодействуя со специальными участками клеточной мембраны - рецепторами. Рецепторы специфичны, они настроены на восприятие определенных гормонов. Поэтому, хотя гормоны разносятся кровью по всему организму, они воспринимаются только определенными органами и тканями, получившими название органов и тканей-мишеней.
Включение гормонов в обменные процессы, протекающие в органах и тканях, опосредуется внутриклеточными посредниками, передающими влияние гормона на определенные внутриклеточные структуры. Наиболее значимым из них является циклический аденозинмонофосфат, образующийся под влиянием гормона из аденозинтрифосфорной кислоты, присутствующей во всех органах и тканях. Кроме того, гормоны способны активировать гены и таким образом влиять на синтез внутриклеточных белков, участвующих в специфической функции клеток.
Гипоталамо-гипофизарная система, ее роль в регуляции деятельности желез внутренней секреции. Гипоталамо-гипофизарной системе принадлежит важнейшая роль в регуляции активности всех желез внутренней секреции. Многие клетки одного из жизненно важных отделов мозга - гипоталамуса обладают способностью к секреции гормонов, называемых рилизинг-факторами. Это нейросекреторные клетки, аксоны которых связывают гипоталамус с гипофизом. Выделяемые этими клетками гормоны, попадая в определенные отделы гипофиза, стимулируют секрецию его гормонов. Гипофиз - небольшое образование овальной формы, расположен у основания мозга в углублении турецкого седла основной кости черепа.
Различают переднюю, промежуточную и заднюю доли гипофиза. Согласно Международной анатомической номенклатуре, переднюю и промежуточную долю называют аденогипофизом, а заднюю- нейрогипофизом.
Под влиянием рилизинг-факторов в передней доле гипофиза выделяются тропные гормоны: соматотропный, тиреотропный, адренокортикотропный, гонадотропный.
Соматотропин,
или гормон роста, обусловливает рост костей в длину, ускоряет процессы обмена веществ, что приводит к усилению роста, увеличению массы тела. Недостаток этого гормона проявляется в малорослости (рост ниже 130 см), задержке полового развития; пропорции тела при этом сохраняются. Психическое развитие гипофизарных карликов обычно не нарушено. Среди гипофизарных карликов встречались и выдающиеся люди.
Избыток гормонов роста в детском возрасте ведет к гигантизму. В медицинской литературе описаны гиганты, имевшие рост 2 м 83 см и даже более (3 м 20 см). Гиганты характеризуются длинными конечностями, недостаточностью половых функций, пониженной физической выносливостью.
Иногда избыточное выделение гормона роста в кровь начинается после полового созревания, т. е. когда эпифизарные хрящи уже окостенели и рост трубчатых костей в длину уже невозможен. Тогда развивается акромегалия: увеличиваются кисти и стопы, кости лицевой части черепа (они окостеневают позже), усиленно растут нос, губы, подбородок, язык, уши, голосовые связки утолщаются, отчего голос становится грубым; увеличивается объем сердца, печени, желудочно-кишечного тракта.
Адренокортикотропный гормон
(АКТГ) оказывает влияние на деятельность коры надпочечников. Увеличение количества АКТГ в крови вызывает гиперфункцию коры надпочечников, что приводит к нарушению обмена веществ, увеличению количества сахара в крови. Развивается болезнь Иценко - Кушинга с характерным ожирением лица и туловища, избыточно растущими волосами на лице и туловище; нередко при этом у женщин растут борода и усы; повышается артериальное давление; разрыхляется костная ткань, что ведет подчас к самопроизвольным переломам костей.
В аденогипофизе образуется также гормон, необходимый для нормальной функции щитовидной железы (тиреотропин).
Несколько гормонов передней доли гипофиза оказывают влияние на функции половых желез. Этогонадотропные гормоны. Одни из них стимулируют рост и созревание фолликулов в яичниках (фолитропин), активируют сперматогенез. Под влиянием лютропина у женщин происходит овуляция и образование желтого тела; у мужчин он стимулирует выработку тестостерона. Пролактин оказывает влияние на выработку молока в молочных железах; при его недостатке продукция молока снижается.
Из гормонов промежуточной доли гипофиза наиболее изучен меланофорный гормон, или меланотропин, регулирующий окраску кожного покрова. Этот гормон действует на клетки кожи, содержащие зернышки пигмента. Под влиянием гормона эти зернышки распространяются по всем отросткам клетки, вследствие чего кожа темнеет. При недостатке гормона окрашенные зернышки пигмента собираются в центре клеток, кожа бледнеет.
Во время беременности в крови содержание меланофорного гормона увеличивается, что вызывает усиленную пигментацию отдельных участков кожи (пятна беременности).
Под влиянием гипоталамуса из задней доли гипофиза выделяются гормоны антидиуретин, или вазопрессин, и окситоцин. Окситоцин стимулирует гладкую мускулатуру матки при родах.
Он также оказывает стимулирующее влияние на выделение молока из молочных желез.
Наиболее сложным действием обладает гормон задней доли гипофиза, названный антидиуретическим (АДГ); он усиливает обратное всасывание воды из первичной мочи, а также влияет на солевой состав крови. При уменьшении количества АДГ в крови наступает несахарное мочеизнурение (несахарный диабет), при котором в сутки отделяется до 10-20 л мочи. Вместе с гормонами коры надпочечников АДГ регулирует водно-солевой обмен в организме.
Структура и функция гипофиза претерпевают существенные изменения с возрастом. У новорожденного масса гипофиза 0,1 - 0,15 г, к 10 годам она достигает 0,3 г (у взрослых -0,55-0,65 г).
В период, предшествующий половому созреванию, значительно усиливается секреция гонадотропных гормонов, достигающая максимума в период полового созревания.
Регуляция нейросекреции по механизму обратной связи. Гипоталамо-гипофизарной системе принадлежит важнейшая роль в поддержании необходимого уровня гормонов. Это постоянство осуществляется благодаря обратным влияниям гормонов желез внутренней секреции на гипофиз и гипоталамус. Циркулирующие в крови гормоны, влияя на гипофиз, тормозят выделение в нем тропных гормонов либо, воздействуя на гипоталамус, снижают высвобождение рилизинг-факторов. Это так называемая отрицательная обратная связь (рис. 27).

Рассмотрим взаимодействие желез внутренней секреции на примере гипофиза и щитовидной железы. Тиреотропный гормон гипофиза стимулирует секрецию щитовидной железы, но если содержание ее гормона превысит нормальный предел, то этот гормон по механизму обратной связи затормозит образование тиреотропного гормона гипофиза. Соответственно снизится его активирующее влияние на щитовидную железу и уменьшится содержание ее гормона в крови. Такие же взаимоотношения выявлены между аденокортикотропным гормоном гипофиза и гормонами коры надпочечников, а также между гонадотропными гормонами и гормонами половых желез.
Таким образом, осуществляется саморегуляция деятельности желез внутренней секреции: увеличение функции железы под влиянием факторов внешней или внутренней среды приводит в силу отрицательной обратной связи к последующему торможению и нормализации гормонального баланса.
Так как гипоталамическая область мозга связана с другими отделами центральной нервной системы, то она является как бы коллектором всех импульсов, поступающих из внешнего мира и внутренней среды. Под влиянием этих импульсов меняется функциональное состояние нейросекреторных клеток гипоталамуса, а вслед за этим - деятельность гипофиза и связанных с ним эндокринных желез.
Щитовидная железа.
Щитовидная железа располагается впереди гортани и состоит из двух боковых долей и перешейка. Железа богато снабжена кровеносными и лимфатическими сосудами. За 1 мин через сосуды щитовидной железы протекает количество крови, в 3-5 раз превышающее массу этой железы.
Крупные железистые клетки щитовидной железы образуют фолликулы, заполненные коллоидным веществом. Сюда поступают вырабатываемые железой гормоны, представляющие собой соединение иода с аминокислотами.
Гормон щитовидной железы тироксин содержит до 65% иода. Тироксин-мощный стимулятор обмена веществ в организме; он ускоряет обмен белков, жиров и углеводов, активирует окислительные процессы в митохондриях, что ведет к усилению энергетического обмена. Особенно важна роль гормона в развитии плода, в процессах роста и дифференцировки тканей.
Гормоны щитовидной железы оказывают стимулирующее воздействие на центральную нервную систему. Недостаточное поступление гормона в кровь или его отсутствие в первые годы жизни ребенка приводит к резко выраженной задержке психического развития.
В процессе онтогенеза масса щитовидной железы значительно возрастает - с 1 г в период новорожденности до 10 г к 10 годам. С началом полового созревания рост железы особенно интенсивен, в этот же период возрастает функциональное напряжение щитовидной железы, о чем свидетельствует значительное повышение содержания суммарного белка, который входит в состав гормона щитовидной железы. Содержание тиреотропина в крови интенсивно нарастает до 7 лет. Увеличение содержания тироидных гормонов отмечается к 10 годам и на завершающих этапах полового созревания (15-16 лет). В возрасте от 5-6 к 9-10 годам качественно изменяются гипофизарно-щитовидные взаимоотношения - снижается чувствительность щитовидной железы к тиреотропным гормонам, наибольшая чувствительность к которым отмечена в 5-6 лет. Это свидетельствует о том, что щитовидная железа имеет особенно большое значение для развития организма в раннем возрасте.
Недостаточность функции щитовидной железы в детском возрасте приводит к кретинизму. При этом задерживается рост и нарушаются пропорции тела, задерживается половое развитие, отстает психическое развитие. Раннее выявление гипофункции щитовидной железы и соответствующее лечение оказывают значительный положительный эффект.
Нарушения функций щитовидной железы могут возникать в результате генетических изменений, а также из-за недостатка иода, необходимого для синтеза гормонов щитовидной железы. Чаще всего это имеет место в высокогорных районах, лесистых местностях с подзолистой почвой, где ощущается нехватка иода в воде, почве, растениях. У людей, живущих в этих местностях, происходит увеличение щитовидной железы до значительных размеров, а функция ее, как правило, снижена. Это эндемический зоб. Эндемическими называют заболевания, связанные с определенной местностью и постоянно наблюдаемые у живущего там населения.
В нашей стране благодаря широкой сети профилактических мероприятий эндемический зоб как массовое заболевание ликвидирован. Хороший эффект дает прибавка солей иода к хлебу, чаю, соли. Добавление 1 г йодистого калия на каждые 100 г соли удовлетворяет потребность организма в иоде.
Надпочечники.
Надпочечники - парный орган; располагаются они в виде небольших телец над почками. Масса каждого из них 8-30 г. Каждый надпочечник состоит из двух слоев, имеющих разное происхождение, разное строение и различные функции: наружного - коркового и внутреннего - мозгового.
Из коркового слоя надпочечников выделено более 40 веществ, относящихся к группе стероидов. Это -кортикостероиды, или кортикоиды. Выделяют три основные группы гормонов коркового слоя надпочечников:

1) глюкокортикоиды - гормоны, действующие на обмен веществ, особенно на обмен углеводов. Сюда относят гидрокортизон, кортизон и кортикостерон. Отмечена способность глюкокортикоидов подавлять образование иммунных тел, что дало основание применять их при пересадке органов (сердце, почки). Глюкокортикоиды обладают противовоспалительным действием, снижают повышенную чувствительность к некоторым веществам;
2) минералокортикоиды. Они регулируют преимущественно минеральный и водный обмен. Гормон этой группы - аль-достерон; 3) андрогены и эстрогены - аналоги мужских и женских половых гормонов. Эти гормоны менее активны, чем гормоны половых желез, вырабатываются в незначительном количестве.

Гормональная функция коры надпочечников тесно связана с деятельностью гипофиза. Адренокортикотропный гормон гипофиза (АКЛТ) стимулирует синтез глюкокортикоидов и в меньшей степени - андрогенов.
Надпочечные железы уже с первых недель жизни характеризуются бурными структурными преобразованиями. Развитие коры надпочечников интенсивно протекает в первые годы жизни ребенка. К 7 годам ее ширина достигает 881 мкм, в 14 лет она составляет 1003,6 мкм. Мозговое вещество надпочечников к моменту рождения представлено незрелыми нервными клетками. Они быстро в течение первых лет жизни дифференцируются в зрелые клетки, называемые хромофильными, так как отличаются способностью окрашиваться в желтый цвет хромовыми солями. Эти клетки синтезируют гормоны, действие которых имеет много общего с симпатической нервной системой,-катехоламины (адреналин и норадреналин). Синтезированные катехоламины содержатся в мозговом веществе в виде гранул, из которых освобождаются под действием соответствующих стимулов и поступают в венозную кровь, оттекающую от коры надпочечников и проходящую через мозговое вещество. Стимулами поступления катехоламинов в кровь является возбуждение, раздражение симпатических нервов, физическая нагрузка, охлаждение и др. Главным гормоном мозгового вещества является адреналин, он составляет примерно 80% гормонов, синтезируемых в этом отделе надпочечников. Адреналин известен как один из самых быстродействующих гормонов. Он ускоряет кругооборот крови, усиливает и учащает сердечные сокращения; улучшает легочное дыхание, расширяет бронхи; увеличивает распад гликогена в печени, выход сахара в кровь; усиливает сокращение мышц, снижает их утомление и т. д. Все эти влияния адреналина ведут к одному общему результату - мобилизации всех сил организма для выполнения тяжелой работы.
Повышенная секреция адреналина - один из важнейших механизмов перестройки в функционировании организма в экстремальных ситуациях, при эмоциональном стрессе, внезапных физических нагрузках, при охлаждении.
Тесная связь хромофильных клеток надпочечника с симпатической нервной системой обусловливает быстрое выделение адреналина во всех случаях, когда в жизни человека возникают обстоятельства, требующие от него срочного напряжения сил. Значительное нарастание функционального напряжения надпочечников отмечается к 6 годам и в период полового созревания. В это же время значительно увеличивается содержание в крови стероидных гормонов и катехоламинов.
Поджелудочная железа.
Позади желудка, рядом с двенадцатиперстной кишкой, лежит поджелудочная железа. Это железа смешанной функции. Эндокринную функцию осуществляют клетки поджелудочной железы, расположенные в виде островков (островки Лангерганса). Гормон был назван инсулином (лат. insula-островок).
Инсулин действует главным образом на углеводный обмен, оказывая на него влияние, противоположное адреналину. Если адреналин способствует быстрейшему расходованию в печени запасов углеводов, то инсулин сохраняет, пополняет эти запасы.
При заболеваниях поджелудочной железы, приводящих к снижению выработки инсулина, большая часть поступающих в организм углеводов не задерживается в нем, а выводится с мочой в виде глюкозы. Это приводит к сахарному мочеизнурению (сахарный диабет). Наиболее характерные признаки диабета - постоянный голод, неудержимая жажда, обильное выделение мочи и нарастающее исхудание.
У новорожденных внутрисекреторная ткань поджелудочной железы преобладает над внешнесекреторной. Островки Лангерганса значительно увеличиваются в размерах с возрастом. Островки большого диаметра (200-240 мкм), свойственные взрослым, обнаруживаются после 10 лет. Установлено и повышение уровня инсулина в крови в период от 10 до 11 лет. Незрелость гормональной функции поджелудочной железы может явиться одной из причин того, что у детей сахарный диабет выявляется чаще всего в возрасте от 6 до 12 лет, особенно после перенесения острых инфекционных заболеваний (корь, ветряная оспа, свинка). Отмечено, что развитию заболевания способствует переедание, в особенности избыточность богатой углеводами пищи.
Инсулин по своей химической природе - белковое вещество, которое удалось получить в кристаллическом виде. Под его влиянием происходит синтез гликогена из молекул сахара и отложение запасов гликогена в клетках печени. Вместе с тем инсулин способствует окислению сахара в тканях и таким образом обеспечивает наиболее полное его использование.
Благодаря взаимодействию адреналинового и инсулинового влияния поддерживается определенный уровень сахара в крови, необходимый для нормального состояния организма.
Половые железы.
Половые гормоны вырабатываются половыми железами, которые относятся к числу смешанных.
Мужские половые гормоны (андрогены) вырабатываются особыми клетками семенников. Они выделены из экстрактов семенников, а также из мочи мужчин.
Истинным мужским половым гормоном является тестостерон и его производное - андростерон. Они обусловливают развитие полового аппарата и рост половых органов, развитие вторичных половых признаков: огрубение голоса, изменение телосложения- шире становятся плечи, увеличиваются мышцы, усиливается рост волос на лице и теле. Совместно с фолликулостимулирую-щим гормоном гипофиза тестостерон активирует сперматогенез (созревание сперматозоидов).
При гиперфункции семенников в раннем возрасте отмечается преждевременное половое созревание, быстрый рост тела и развитие вторичных половых признаков. Поражение семенников или их удаление (кастрация) в раннем возрасте вызывает прекращение роста и развития половых органов; вторичные половые признаки не развиваются, увеличивается период роста костей в длину, отсутствует половое влечение, оволосение лобка очень скудное или не наступает вовсе. Не растут волосы на лице, голос сохраняется высоким в течение всей жизни. Короткое туловище и длинные руки и ноги придают мужчинам с поврежденными или удаленными семенниками характерный вид.
Женские половые гормоны - эстрогены вырабатываются в яичниках. Они оказывают влияние на развитие половых органов, выработку яйцеклеток, обусловливают подготовку яйцеклеток к оплодотворению, матки - к беременности, молочных желез - к кормлению ребенка.
Истинным женским половым гормоном считают эстрадиол. В процессе обмена веществ половые гормоны превращаются в разнообразные продукты и выделяются с мочой, откуда их искусственно выделяют. К женским половым гормонам относится и прогестерон - гормон беременности (гормон желтого тела).
Гиперфункция яичников вызывает раннее половое созревание с выраженными вторичными признаками и менструацией. Описаны случаи раннего полового созревания девочек в 4-5 лет.
Половые гормоны в течение всей жизни оказывают мощное влияние на формирование тела, обмен веществ и половое поведение.

Гуморальная регуляция - это регуляция процессов жизнедеятельности с помощью веществ, поступающих во внутреннюю среду организма (кровь, лимфу, ликвор и др.). К факторам гуморальной регуляции относятся гормоны, электролиты, медиаторы, кинины, простагландины, различные метаболиты и т.д. Гуморальная регуляция обеспечивает более длительные адаптивные реакции в сравнении с нервной, которая осуществляет запуск быстрых приспособительных реакций при изменениях внешней или внутренней среды.

Эндокринная железа, или железа внутренней секреции - это анатомическое образование, лишенное выводных протоков, единственной или основной функцией которого является внутренняя секреция гормонов.

Гормоны - это биологически высокоактивные вещества, синтезирующиеся и выделяющиеся во внутреннюю среду организма эндокринными железами, и оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма.

Общие биологические свойства гормонов: строгая специфичность (тропность) физиологического действия; высокая биологическая активность; дистантный характер действия; генерализованность действия; пролонгированность действия.

Общие функции гормонов: 1)регуляция роста, развития и дифференцировки тканей и органов, что определяет физическое, половое и умственное развитие; 2)адаптация организма к меняющимся условиям существования; 3)поддержание гомеостаза.

В состоянии покоя 80% циркулирующих в крови гормонов находится в комплексе со специфическими белками, являясь депо, или физиологическим резервом. Биологическая активность определяется содержанием свободных форм гормонов. Обязательным условием для проявления эффектов гормона является его взаимодействие с рецепторами.

Основные механизмы действия гормонов: 1)Реализация эффекта с наружной поверхности клеточной мембраны (связывание с специфическими рецепторами на поверхности мембраны, сопряженными с G-белками, активирующими или ингибирующими аденилатциклазу, под действием которой из АТФ образуется цАМФ; цАМФ активирует протеинкиназу, фосфорилирующую белки). В качестве вторичных посредников кроме цАМФ могут быть цГМФ, инозитол-1,4,5- трифосфат, ионы кальция. Так действуют белково-пептидные гормоны, катехоламины, простагландины. 2)Реализация эффекта после проникновения гормона внутрь клетки (связывание гормона с специфическими рецепторами в цитоплазме или ядре, связывание гормон-рецепторного комплекса с ДНК и белками хроматина, что стимулирует траскрипцию определенных генов, трасляция мРНК приводит к появлению в клетке новых белков, вызывающих биологический эффект этих гормонов). Так действуют стероидные и йодсодержащие тиреоидные гормоны, обладающие липофильностью.

Функциональная классификация гормонов: 1)Эффекторные гормоны; 2)Тропные гормоны; 3)Рилизинг-гормоны.

Гипоталамо-гипофизарная система. Гипоталамус вырабатывает нейрогормоны - рилизинг-гормоны. Среди рилизинг гормонов различают либерины - стимуляторы синтеза и выделения гормонов аденогипофиза и статины - ингибиторы секреции, например: тиреолиберин, кортиколиберин, соматолиберин. В свою очередь тропные гормоны аденогипофиза (кортикотропин, тиреотропин, гонадотропин) регулируют секрецию эффекторных гормонов рядом других периферических желез внутренней секреции.

Гормоны передней доли гипофиза: : адренокортикотропный, тиреотропный, гонадотропные (фолликулостимулирующий и лютеинизирущий), соматотропный, пролактин.

Гормоны задней доли гипофиза: антидиуретический гормон, или вазопрессин, и окситоцин образуются в гипоталамусе; в нейрогипофизе происходит их накопление и секреция в кровь.

Щитовидная железа вырабатывает йодсодержащие гормоны (тироксин и трийодтиронин) и кальцитонин. Функции йодсодержащих гормонов: усиление всех видов обмена (белковый, липидный, углеводный), повышение основного обмена и усиление энергообразования в организме; влияние на процессы роста, физическое и умственное развитие; увеличение частоты сердечных сокращений; повышение температуры тела; повышение возбудимости симпатической нервной системы. Кальцитонин участвует в регуляции кальциевого обмена (угнетение функции остеокластов и активация функции остеобластов, усиление процессов минерализации, угнетение реабсорбции кальция в почках и увеличение его выделения с мочой, гипокальциемия) и фосфатов (угнетение рабсорбции фосфатов в почке и усиление выделения их с мочой).

Паращитовидные (околощитовидные) железы. Вырабатывают паратгормон, регулирующий обмен кальция (усиление функции остеокластов, деминерализация кости, усиление реабсорбции кальция в почках, гиперкальциемия) и фосфора (угнетение обратного всасывания в почках, фосфатурия) в организме.

Надпочечники. Гормоны коркового вещества надпочечников: минералокортикоиды (альдостерон и др.), глюкокортикоиды (кортизол и др.), половые гормоны.

Эффекты альдостерона: усиление реабсорбции ионов натрия и хлора в дистальных почечных канальцах, увеличение экскреции ионов калия, возрастание реабсорбции воды, увеличение объема циркулирующей крови, повышение артериального давления, уменьшение диуреза; провоспалительное действие.

Эффекты глюкокортикоидов: стимуляция глюконеогенеза (гипергликемия), катаболическое влияние на белковый обмен, активация липолиза, противовоспалительное действие, угнетение клеточного и гуморального иммунитета, противоаллергическое действие, повышение чувствительности гладких мышц сосудов к катехоламинам.

Половые гормоны имеют значение только в детском возрасте.

Гормоны мозгового вещества надпочечников: адреналин и норадреналин. Адреналин стимулирует деятельность сердца, сужает сосуды, кроме коронарных,сосудов легких, головного мозга, работающих мышц, которые он расширяет; расслабляет мышцы бронхов, тормозит перистальтику и секрецию пищеварительного тракта и повышает тонус сфинктеров, расширяе зрачок, уменьшает потоотделение, усиливает процессы катаболизма и образования энергии, усиливает расщепление гликогена в печени и мышцах, активирует липолиз, активирует термогенез.

Поджелудочная железа (эндокринная функция). Вырабатывает гормоны инсулин, глюкагон, соматостатин, панкреатический полипептид, основным из которых является инсулин. Инсулин прежде всего влияет на углеводный обмен (способствует глюкогенезу в печени и мышцах, вызывает гипогликемию, повышает проницаемость клеточной мембраны для глюкозы, стимулирует синтез белка из аминокислот, уменьшает катаболиз белков, усиливает процессы липогенеза. Глюкагон является антагонистом инсулина. Он усиливает распад гликогена в печени,

вызывает гипергликемию.

Половые железы. Мужские половые гормоны (андрогены), наиболее важным является тестостерон. Тестостерон участвует в половой дифференцировке гонады, обеспечивает развитие первичных и вторичных мужских половых признаков, появление половых рефлексов; обладает выраженным анаболическим действием.

Женские половые гормоны: эстрогены (эстрон, эстрадиол, эстриол) и прогестерон. Эстрогены (вырабатываются в яичниках) стимулируют развитие первичных и вторичных женских половых признаков, стимулируют рост и развитие молочных желез, обладают анаболическим действием, усиливают образование жира и распределение его типичное для женской фигуры, способствуют оволосению по женскому типу. Главная функция прогестерона (гормона желтого тела яичников) - подготовка эндометрия к имплантации оплодотворенной яйцеклетки и обеспечение нормального протекания беременности. У небеременных женщин прогестерон участвует в регуляции менструального цикла.

Эндокринной активностью обладают также и другие органы. Почки синтезируют и секретируют в кровь ренин, эритропоэтин, кальцитриол. В предсердиях вырабатывается натрийуретический гормон. Клетки слизистой оболочки желудка и тонкой кишки (клетки АПУД-системы) секретируют большое количество пептидных соединений: секретин, гастрин, холецистокинин-панкреозимин, бомбезин, мотилин, соматостатин, нейротензин и другие, значительная часть которых обнаружена и в мозге.

Занятие 1. Железы внутренней секреции. Гипоталамо-

гипофизарная система. Надпочечники.

(Доклады студентов)

Задача 1. Влияние адреналина, ацетилхолина, пилокарпина, атропина на

мышцы радужной оболочки глаза лягушки (Пр. стр. 277).

Занятие 2. Семинар. Щитовидная и паращитовидные железы.

Поджелудочная железа. (Доклады студентов).

Занятие 3. Половые железы. (Доклады студентов).