В концентрации 0 2 нейротоксины. Отравляющие и высокотоксичные вещества нейротоксического действия

Как показывают исследования, аутизм и другие нервные расстройства на сегодняшний момент диагностируются все чаще. Причиной тому могут быть не только наследственные генетические заболевания, но и опасные химикаты. В частности, одни только органофосфаты, используемые в сельском хозяйстве, серьезно влияют на состояние центральной нервной системы.

И недавно, эксперты определили 10 химических веществ, так называемых нейротоксинов, содержащихся как в окружающей среде, так и в бытовых предметах, мебели и одежде. По мнению ученых, именно эти вещества являются причиной развития заболеваний, поражающих нервную систему. Большинство из них уже сильно ограничено в использовании, но некоторые из них по-прежнему представляют большую опасность.

Хлорпирифос


Распространенный в прошлом химикат, входящий в группу фосфорорганических пестицидов, используемый для уничтожения вредителей. На сегодняшний момент хлорпирифос классифицируется как высокотоксичное соединение, опасное для птиц и пресноводных рыб, и умеренно токсичное для млекопитающих. Несмотря на это, оно по-прежнему широко используется в выращивании непродовольственных культур и для обработки изделий из древесины.

Метилртуть


Метилруть – опасный нейротоксин, влияющий на механизмы наследственности у человека. Она вызывает в клетках аномальные митозы (К-митозы), а также наносит повреждения хромосомам, причем ее воздействие в 1000 раз превышает эффект от колхицина. Ученые считают возможным тот факт, что метилруть может вызывать врожденные уродства и психические дефекты.

Полихлорированные бифенилы


Или ПХБ, входят в группу химических веществ, определяемых как стойкие органические загрязнители. Они попадают в организм через легкие, желудочно-кишечный тракт с пищей или кожу, и откладываются в жирах. Классифицируется ПХБ как вероятный канцероген человека. Кроме того, они вызывают заболевания печени, нарушают репродуктивную функцию и разрушают эндокринную систему.

Этанол


Как оказалось, этанол не является экологически безопасной альтернативой бензину. Судя по данным ученых из Стэнфордского университета, автомобили на смеси этанола и бензина способствуют повышению в атмосфере уровня двух канцерогенов – формальдегида и ацетальдегида. Кроме того, при использовании этанола в качестве топлива вырастет уровень атмосферного озона, который даже при малых концентрациях приводит ко всевозможным заболеваниям легких.

Свинец


Проникая в организм, свинец попадает в кровоток, и частично выводится естественным путем, частично откладывается в различных системах организма. При значительной степени интоксикации развиваются нарушения функционального состояния почек, головного мозга, нервной системы. Отравление органическими соединениями свинца приводит к нервным расстройствам – бессоннице и истерическому состоянию.

Мышьяк


В промышленности мышьяк используется для производства удобрений, химической обработки древесины и в изготовлении полупроводников. В организм человека мышьяк попадает в виде пыли и через желудочно-кишечный тракт. При длительном контакте с мышьяком могут образоваться злокачественные опухоли, кроме того нарушается обмен веществ и функции центральной и периферической нервной системы.

Марганец


Прежде всего, марганец попадает в человеческий организм через дыхательные пути. Крупные частицы, отторгнутые дыхательными путями, могут быть проглочены вместе со слюной. Избыточное количество марганца накапливается в печени, почках, железах внутренней секреции и костях. Интоксикация на протяжении нескольких лет приводит к нарушению в работе центральной нервной системы и развитию болезни Паркинсона. Кроме того, избыток марганца приводит к заболеваниям костей, возрастает риск переломов.

Фтор


Несмотря на то, что фториды широко используются в гигиене ротовой полости в борьбе с бактериальными заболеваниями зубов, они могут вызвать множество негативных эффектов. Потребление воды с содержанием фтора в концентрации одна часть на миллион вызывают изменения в мозговой ткани аналогичные болезни Альцгеймера. Самое парадоксальное: переизбыток фтора разрушительно влияет на сами зубы, вызывая флюороз.

Тетрахлорэтилен


Или перхлорэтилен является превосходным растворителем и применяется в текстильной промышленности и для обезжиривания металлов. При контакте с открытым пламенем и нагретыми поверхностями разлагается с образованием токсичных паров. При длительном контакте тетрахлорэтилен оказывает токсическое воздействие на ЦНС, печень и почки. Известен ряд острых, приводящих к смерти, отравлений.

Толуол


В химической промышленности используется для изготовления бензола, бензойной кислоты и входит в состав многих растворителей. Пары толуола проникают в организм человека через дыхательные пути и кожный покров. Интоксикация вызывает нарушения развития организма, снижает способности к обучению, поражает нервную систему и снижает иммунитет.

В составе 1 мл раствора для внутривенного и внутримышечного введения содержится 50 мг действующего вещества и вспомогательные вещества: натрия дисульфит - 1 мг; вода для инъекций - до 1 мл.

Форма выпуска

  • 1 ампула (2 мл) по 5, 10, 20 и 50 штук в картонной упаковке;
  • 1 ампула (5 мл) по 5, 10 и 20 штук в картонной упаковке.

Фармакологическое действие

  • препарат защищает мембраны клеток головного мозга (нейронов) от любых воздействий (мембранопротективное действие);
  • улучшает кровообращение в области головного мозга и снижает потребность нейронов в кислороде (антигипоксическое действие);
  • оказывает прямое активирующее влияние на умственную деятельность (ноотропное действие);
  • снимает , страха и напряжения ;
  • повышает стрессоустойчивость (анксиолитическое действие);
  • подавляет развитие судорог (противосудорожное действие).

Фармакодинамика и фармакокинетика

Активное действующее вещество Нейрокса этилметилгидроксипиридина сукцинат (ЭМГПС) подавляет токсическое действие свободных радикалов, образующихся в процессе обмена веществ в организме человека и разрушающих клетки и ткани. Он защищает мембраны (оболочки) клеток головного мозга от любых воздействий, улучшает их строение и функцию (в том числе транспортировку кислорода и нейромедиаторов – веществ, с помощью которых передается информация в клетках головного мозга).

Под действием Нейрокса повышается концентрация в головном мозге , который называют гормоном удовольствия. Все это приводит к повышению стрессоустойчивости и умственных способностей, снижению тревожности и судорожной готовности . Нейрокс оказывает антитоксическое воздействие при острой и хронической алкогольной интоксикации , при абстинентном синдроме ( , развивающейся на фоне отрыва от алкоголя у больных ) и при передозировке средств, влияющих на центральную нервную систему.

Длительность действия Нейрокса при внутримышечном введении — до 4 часов. Максимальная концентрация в плазме крови наступает через 20 – 40 минут после введения. Действующее вещество быстро переходит из кровеносных сосудов в органы и ткани и также быстро выводится из организма с мочой, предварительно метаболизируясь (разлагаясь на продукты обмена – ) в печени.

Показания к применению Нейрокса

Показания к применению Нейрокса:

  • острые нарушения мозгового кровообращения, в том числе ;
  • заболевания, связанные с нарушением обменных процессов в клетках головного мозга ();
  • состояния после перенесенных черепно-мозговых травм ;
  • легкие умственные нарушения на фоне ;
  • тревожные состояния на фоне и психических заболеваний ;
  • (в составе комплексного лечения).

Показания к применению Нейрокса включают в себя также алкогольную интоксикацию , абстинентный синдром на фоне хронического алкоголизма и острую интоксикацию антипсихотическими лекарственными средствами (нейролептиками ).

Лекарство Нейрокс – противопоказания для применения

Нейрокс нельзя применять при следующих заболеваниях и состояниях:

  • тяжелых заболеваниях, сопровождающихся острыми нарушениями функции почек или печени ( и печеночной недостаточностью );
  • и кормлении ребенка грудью;
  • повышенной чувствительности организма к компонентам препарата;
  • детям любого возраста.

С осторожностью Нейрокс применяют при аллергических заболеваниях и реакциях, которые были у пациента в прошлом. Во время лечения следует соблюдать осторожность при вождении автомобиля и выполнении других работ, требующих повышенной концентрации внимания и быстроты ответных реакций.

Препарат Нейрокс — побочные эффекты

На фоне быстрого введения препарата (особенно при внутривенном струйном введении) возможно появление сухости и металлического привкуса во рту, прилива тепла, першения в горле и чувства нехватки воздуха. Возможны также аллергические реакции .

Если применять препарат курсами, превышающими по длительности рекомендованные, то нельзя исключить появления тошноты , и кишечных колик , или нарушения засыпания.

Нейрокс, инструкция по применению

Нейрокс вводится внутримышечно или внутривенно (струйно или капельно). При капельном введении препарат разводится физраствором (0,9% хлористым натрием). Дозировки Нейрокса чаще всего подбираются индивидуально врачом с учетом заболевания, состояния пациента и рекомендаций производителя.

Инструкция по применению Нейрокса рекомендует начинать лечение с суточной дозы 50-300 мг. Дозу более 50 мг лучше распределять на 2 – 3 введения. Постепенно дозу увеличивают до получения терапевтического эффекта. Максимальная суточная доза — 800 мг. Курс лечения в зависимости от состояния больного и дозировки может колебаться от 5 до 30 дней.

Внутривенно струйно лекарство вводят очень медленно в течение не менее 5 минут, капельно — со скоростью 40-60 капель в минуту.

Уколы Нейрокса – возможна ли передозировка?

При передозировке возможно появление или, напротив, . Если препарат вводится внутривенно, возможен некоторый подъем в течение 90 – 120 минут после введения. После этого времени симптомы АД приходит в норму самостоятельно, самочувствие восстанавливается в течение суток.

При бессоннице иногда назначаются лекарственные препараты из группы транквилизаторов (например, ) в минимальной дозировке.

Взаимодействие Нейрокса с другими лекарственными препаратами

Нейрокс потенцирует (усиливает) действие (например, Диазепама ), противоэпилептических (), противопаркинсонических (Леводопа ) лекарственных препаратов и нитратов (). Уменьшает токсическое действие алкоголя.

Условия продажи

В аптеке Нейрокс можно приобрести только по рецепту врача.

Условия хранения

Ампулы Нейрокс должны храниться в недоступном для детей, сухом, защищенном от света месте при температуре не выше 25°С.

Срок годности

Препарат хранится 3 года при соблюдении вышеуказанных условий.

Аналоги Нейрокса

Совпадения по коду АТХ 4-го уровня:

Аналоги — это препараты разных лекарственных групп, которые используются для лечения одних и тех же заболеваний. Аналоги Нейрокса:

  • препараты из группы ноотропов ( , );
  • препараты из группы бензодиазепиновых транквилизаторов ( , );
  • препараты из группы противоэпилептических средств ();
  • препараты, улучшающие мозговое кровообращение ();
  • препараты из группы антиоксидантов ( и ).

Алкоголь и Нейрокс

Нейрокс снижает токсическое действие алкоголя.

Отзывы о Нейроксе

Отзывы о Нейроксе разные, приблизительно половина из них положительная, половина – отрицательная. В положительных отзывах отмечается в основном эффект от комплексного лечения различных неврологических расстройств , в состав которого входил в том числе и Нейрокс.

Отрицательные отзывы о Нейроксе связаны с отсутствием лечебного эффекта после проведенного курса лечения. Очевидно, во многом эффективность этого препарата связана с правильностью его назначения и подобранной дозировкой.

Цена Нейрокса

Цена Нейрокса в Москве зависит от дозировки препарата в одной ампуле и от количества ампул в упаковке:

  • 10 ампул по 2 мл — от 306 до 378 рублей;
  • 50 ампул по 2 мл – от 1066 до 1274 рубля;
  • 5 ампул по 5 мл – 287 – 349 рублей.

Цена уколов Нейрокса будет зависеть от подобранной врачом дозы и длительности курса лечения. Цена таблеток Нейрокса не может быть определена, так как этот препарат в таблетках не выпускается.

  • Интернет-аптеки России Россия
  • Интернет-аптеки Украины Украина
  • Интернет-аптеки Казахстана Казахстан

ЗдравСити

    Нейрокс р-р в/в и в/м 50мг/мл 2мл n50 ЗАО "ФармФирма "Сотекс"

    Нейрокс р-р в/в и в/м 50мг/мл 2мл n10 ЗАО "ФармФирма "Сотекс"

Аптека Диалог

    Нейрокс (амп. 50мг/мл 5мл №5)

    Нейрокс (амп. 50мг/мл 2мл №10)

Еврофарм* скидка 4% по промокоду medside11

    Нейрокс р-р д/ин. 50 мг/мл 2 мл №10 амп ФАРМФИРМА СОТЕКС ЗАО

    Нейрокс р-р д/ин. 50 мг/мл 5 мл №5 амп ФАРМФИРМА СОТЕКС ЗАО

Леонид Завальский

Нейротоксины все чаще используют в медицине для лечебных целей.

Некоторые нейротоксины с разной молекулярной структурой обладают сходным механизмом действия, вызывая фазовые переходы в мембранах нервных и мышечных клеток. Не последнюю роль в действии нейротоксинов играет гидратация, существенно влияющая на конформацию взаимодействующих ядов и рецепторов.

Сведения о ядовитости иглобрюхов (маки-маки, рыбы-собаки, фугу и др.) восходят к глубокой древности (более 2500 лет до нашей эры). Из европейцев первым дал подробное описание симптомов отравления известный мореплаватель Кук, который вместе с 16 моряками угостился иглобрюхом во время второго кругосветного путешествия в 1774 году. Ему еще повезло, поскольку он “едва притронулся к филе”, тогда как “свинья, съевшая внутренности, околела и сдохла”. Как ни странно, японцы не могут отказать себе в удовольствии отведать такой, с их точки зрения, деликатес, хотя и знают, как осторожно следует его готовить и опасно есть.

Первые признаки отравления появляются в интервале от нескольких минут до 3 часов после приема фугу в пищу. Вначале неудачливый едок ощущает покалывание и онемение языка и губ, распространяющееся затем на все тело. Потом начинается головная и желудочная боль, руки парализуются. Походка становится шатающейся, появляется рвота, атаксия, ступор, афазия. Дыхание затрудняется, артериальное давление снижается, понижается температура тела, развивается цианоз слизистых и кожи. Больной впадает в коматозное состояние, и вскоре после остановки дыхания прекращается и сердечная деятельность. Одним словом, типичная картина действия нервно-паралитического яда.

В 1909 году японский исследователь Тахара выделил активное начало из фугу и назвал его тетродотоксином. Однако лишь спустя 40 лет удалось выделить тетродотоксин в кристаллическом виде и установить его химическую формулу. Для получения 10 г тетродотоксина японскому ученому Тсуда (1967) пришлось переработать 1 тонну яичников фугу. Тетродотоксин представляет собой соединение аминопергидрохиназолина с гуанидиновой группой и обладает чрезвычайно высокой биологической активностью. Как оказалось, именно наличие гуанидиновой группы играет решающую роль в возникновении токсичности.

Одновременно с исследованием яда скалозубых рыб и иглобрюхов во многих лабораториях мира изучались токсины, выделенные из тканей других животных: саламандр, тритонов, ядовитых жаб и других. Интересным оказалось то, что в некоторых случаях ткани совершенно разных животных, не имеющих генетического родства, в частности калифорнийского тритона Taricha torosa, рыб рода Gobiodon, центрально-американских лягушек Atelopus, австралийских осьминогов Hapalochlaena maculosa, вырабатывали тот же самый яд тетродотоксин.

По действию тетродотоксин весьма схож с другим небелковым нейротоксином – сакситоксином, продуцируемым одноклеточными жгутиковыми динофлагеллятами. Яд этих жгутиковых одноклеточных может концентрироваться в тканях моллюсков мидий при массовом размножении, после чего мидии становятся ядовитыми при употреблении человеком в пищу. Изучение молекулярной структуры сакситоксина показало, что его молекулы, как и тетродотоксин, содержат гуанидиновую группу, даже две таких группы на молекулу. В остальном сакситоксин не имеет общих структурных элементов с тетродотоксином. Но механизм действия этих ядов одинаков.

В основе патологического действия тетродотоксина лежит его способность блокировать проведение нервного импульса в возбудимых нервных и мышечных тканях. Уникальность действия яда заключается в том, что он в очень низких концентрациях – 1 гамм (стотысячная доля грамма) на килограмм живого тела – блокирует входящий натриевый ток во время потенциала действия, что приводит к смертельному исходу. Яд действует только с наружной стороны мембраны аксона. На основании этих данных японские ученые Као и Нишияма высказали гипотезу, что тетродотоксин, размер гуанидиновой группы которого близок диаметру гидратированного иона натрия, входит в устье натриевого канала и застревает в нем, стабилизируясь снаружи остальной частью молекулы, размеры которой превышают диаметр канала. Аналогичные данные были получены при изучении блокирующего действия сакситоксина. Рассмотрим явление подробнее.

В состоянии покоя между внутренней и внешней сторонами мембраны аксона поддерживается разность потенциалов, равная примерно 60 мВ (снаружи потенциал положительный). При возбуждении нерва в точке приложения за короткое время (около 1 мс) разность потенциалов меняет знак и достигает 50 мВ – первая фаза потенциала действия. После достижения максимума потенциал в данной точке возвращается к исходному состоянию поляризации, но абсолютная величина его становится несколько больше, чем в состоянии покоя (70 мВ) – вторая фаза потенциала действия. В течение 3-4 мс потенциал действия в данной точке аксона возвращается в состояние покоя. Импульс короткого замыкания достаточен для возбуждения соседнего участка нерва и переполяризации его в тот момент, когда предыдущий участок возвращается к равновесию. Таким образом, потенциал действия распространяется по нерву в виде незатухающей волны, бегущей со скоростью 20-100 м/с.

Ходжкин и Хаксли с сотрудниками подробно исследовали процесс распространения нервного возбуждений и показали, что в состоянии покоя мембрана аксона непроницаема для натрия, тогда как калий свободно диффундирует через мембрану. «Вытекающий» наружу калий уносит положительный заряд, и внутренне пространство аксона заряжается отрицательно, препятствуя дальнейшему выходу калия. В итоге оказывается, что концентрация калия снаружи нервной клетки в 30 раз меньше, чем внутри. С натрием ситуация противоположная – в аксоплазме его концентрация в 10 раз ниже, чем в межклеточном пространстве.

Молекулы тетродотоксина и сакситоксина блокируют работу натриевого канала и, как следствие, препятствуют прохождению потенциала действия через аксон. Как видно, помимо специфического взаимодействия гуанидиновой группы с устьем канала (взаимодействие типа «ключ-замок»), определенную функцию во взаимодействии выполняет оставшаяся часть молекулы, подверженная гидратации молекулами воды из водно-солевого раствора в окружении мембраны.

Значение исследований действия нейротоксинов трудно переоценить, поскольку они впервые позволили приблизиться к пониманию таких фундаментальных явлений, как селективная ионная проницаемость клеточных мембран, лежащая в основе регуляции жизненных функций организма. Используя высоко специфическое связывание меченного тритием тетродотоксина, удалось подсчитать плотность натриевых каналов в мембране аксонов разных животных. Так, в гигантском аксоне кальмара плотность каналов составила 550 на квадратный мкм, а в портняжной мышце лягушки – 380.

Специфическое блокирование нервной проводимости позволило использовать тетродотоксин как мощный местный анестетик. В настоящее время во многих странах уже налажено производство обезболивающих препаратов на основе тетродотоксина. Имеются данные о положительном терапевтическом эффекте препаратов нейротоксина при бронхиальной астме и судорожных состояниях.

Весьма подробно исследованы к настоящему времени и механизмы действия наркотиков морфиевого ряда. Медицине и фармакологии давно известны свойства опия снимать болевые ощущения. Уже в 1803 году немецкий фармаколог Фриц Сертюнер сумел очистить препарат опиума и извлечь из него действующее начало – морфин. Медицинский препарат морфина широко использовался в клинической практике, особенно в годы первой мировой войны. Главный его недостаток – побочное действие, выражающееся в формировании химической зависимости и привыкания организма к наркотику. Поэтому были предприняты попытки найти замену морфию столь же эффективным обезболивающим средством, но лишенным побочного действия. Однако и все новые вещества, как оказалось на поверку, тоже вызывают синдром привыкания. Такая судьба постигла героин (1890), меперидин (1940) и другие производные морфина. Обилие различающихся по форме молекул опиатов дает основание для точного установления строения опиат-рецептора, к которому присоединяется молекула морфия, подобно рецептору тетродотоксина.

Все молекулы анальгетически активных опиатов имеют общие элементы. Молекула опия имеет жесткую Т-образную форму, представленную двумя взаимно перпендикулярными элементами. В основании Т-молекулы размещается гидроксильная группа, а на одном из концов горизонтальной планки – атом азота. Эти элементы составляют «базовую основу» ключа, открывающего рецептор-замок. Существенным представляется то, что обезболивающей и эйфорической активностью обладают лишь левовращающие изомеры морфиевого ряда, тогда как правовращающие такой активности лишены.

Многочисленными исследованиями было установлено, что опиат-рецепторы существуют в организмах всех без исключения позвоночных животных, от акулы до приматов, включая человека. Более того, оказалось, что сам организм способен синтезировать опиеподобные вещества, называемые энкефалинами (метионин-энкефалин и лейцин-энкефалин), состоящие из пяти аминокислот и обязательно содержащие специфический морфиевый «ключ». Энкефалины выбрасываются специальными энкефалиновыми нейронами и вызывают расслабление организма. В ответ на присоединение энкефалинов в опиат-рецептору управляющий нейрон посылает сигнал расслабления гладкой мускулатуре и воспринимается древнейшей формацией нервной системы – лимбическим мозгом – как состояние высшего блаженства, или эйфории. Такое состояние, например, может наступать после завершения стресса, хорошо выполненной работы или глубокого сексуального удовлетворения, требующих известной мобилизации сил организма. Морфий возбуждает опиат-рецептор, как и энкефалины, даже когда нет основания для блаженства, например, в случае болезни. Доказано, что состояние нирваны йогов есть не что иное, как эйфория, достигнутая выбросом энкефалинов путем аутотренинга и медитации. Таким способом йоги открывают доступ к гладкой мускулатуре и могут регулировать работу внутренних органов, даже приостанавливать биение сердца.

Детальные исследования синтетических опиатов дали интереснейшие результаты. В частности, были обнаружены морфиеподобные вещества, обладающие в десятки тысяч раз большей активностью, чем морфий, и вызывающие эйфорию уже при 0,1 мг (эторфин). Последовательно синтезируя новые и новые производные морфия, исследователи пытаются выяснить, какая же структурная часть молекулы наиболее точно соответствует рецептору. Подобным образом на опиат-рецепторы действуют и эндорфины. Некоторые опиаты обладают свойствами антагонистов морфия. Например, налорфин, полученный замещением метильной группы у азота в молекуле морфия на аллильную, почти немедленно приводит в чувство находящихся на грани смерти людей, отравленных морфием. В рамках теории ключа и замка довольно трудно понять, как химически инертная аллильная группа способна столь радикально изменить свойства вещества. К тому же, свойствами антагониста налорфин обладает лишь в одной стереоизомерной форме, когда аллильная группа становится продолжением Т-образной молекулы. В другом стереоизомере, где аллильная группа ориентирована перпендикулярно верхней планке, налорфин обладает свойствами слабого наркотика. Все эти данные наводят на мысль, что определенную роль в модели «ключа» и «замка» может играть гидратация гидрофобной части молекулы, как это видно на примере натриевых каналов. Гидратация, по-видимому, может вносить существенные помехи в специфическую рецепторную реакцию.

Все энкефалины и имитирующие их опиаты подобны ферментам, поскольку соединение их с рецептором влечет определенные биохимические превращения. Антагонистов морфия (например, налорфин) можно рассматривать как ингибиторы, конкурирующие в борьбе за акцептор с молекулами морфия. Ингибиторами следует считать и такие нервные яды, как тетродотоксин и сакситоксин, выигрывающие в борьбе за натриевый канал и блокирующие распространение сигнала действия вдоль аксона. Предполагается, что одна молекула ингибитора индивидуально выводит из строя одну или несколько молекул фермента, соединяясь с ними химически. При этом нарушается комплементарность фермента с субстратом, либо он вообще выпадает в осадок. По такому принципу протекают иммунологические реакции, когда каждая чужеродная молекула подвергается атаке со стороны иммуноглобулинов в составе сыворотки крови. Продукт взаимодействия можно наблюдать в пробирке в виде выпавших в осадок хлопьев, содержащих как чужеродные белки, так и иммунные тела. Однако такая модель не объясняет эффективности налорфина и тетродотоксина. Молекул этих веществ в активной зоне явно меньше, чем активных центров на поверхности субстрата. Как одна молекула налорфина может вывести из строя десятки молекул морфия, а одна молекула тетродотоксина блокировать сотни натриевых каналов?

В связи с указанными затруднениями следует вспомнить о других эффективных механизмах ингибирования, основанных на зависимости растворимости различных веществ от внешних условий. Границы гомогенных растворов часто оказываются весьма чувствительными к присутствию посторонних веществ, незначительные количества которых могут резко сместить фазовую границу раствор-эмульсия вплоть до того, что растворенное вещество выпадет из раствора и из зоны реакции. Действие такого ингибитора основано не на индивидуальном взаимодействии с молекулами, а на смещении констант физико-химического равновесия раствора. Поскольку устойчивость водных клеток и раствора в целом зависят от структуры молекул гидратируемых в растворе веществ, любые изменения структуры этих молекул могут изменять границы устойчивости. Можно предположить, что налорфин действует как ингибитор, смещая границу устойчивости водного раствора, в результате чего наркотическое вещество – морфий – выпадает в осадок. Точно так же, возможно, что потенциал действия и волна нервного возбуждения есть не только распространяющийся по аксону ток короткого замыкания, но и кратковременный (в течение нескольких миллисекунд) фазовый переход в тонком поверхностном слое раздела между мембраной и межклеточным раствором. В этом случае остановка сигнальной волны может осуществляться как через блокирование потоков ионов через мембрану, так и нарушением условий возникновения фазового перехода. Можно предположить, что такие вещества как тетродотоксин, присоединяясь к мембране, настолько сильно смещают константы равновесия, что имеющихся изменений в концентрации натрия может оказаться недостаточно для достижения фазового перехода расслоения.

Таким образом, фазовые переходы в растворах, сопровождаемые перестройкой структуры воды в тонких слоях на поверхности биологических молекул, могут объяснить некоторые странные эффекты конкурентного ингибирования и специфического субстрат-рецепторного взаимодействия при токсическом и наркотическом действии растворимых в воде веществ.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://chemworld.narod.ru

Нейротоксины - это вещества, которые подавляют функции нейронов. Нейроны присутствуют в головном мозге и нервной системе. Функции этих уникальных клеток критически важны для выполнения самых различных задач, начиная от действий вегетативной нервной системы, таких как глотание, а заканчивая действиями более высокого уровня, осуществляемыми головным мозгом. Нейротоксины могут воздействовать различными способами и поэтому связанные с ними опасности разнятся в зависимости от типа нейротоксина и его дозы.

В некоторых случаях нейротоксины просто сильно повреждают нейроны так, что последние не могут функционировать.

В других случаях они атакуют сигнальные способности нейронов, блокируя высвобождение различных химических веществ или вмешиваясь в процесс получения передаваемых сообщений, а иногда - заставляя нейроны посылать ложные сигналы. Также нейротоксины способны полностью уничтожать нейроны.

Выработка нейротоксинов

В действительности организм сам вырабатывает определенные нейротоксины. К примеру, наносить вред организму могут большие количества многих нейромедиаторов, вырабатываемых для того, чтобы пересылать сообщения по нервной системе. В некоторых случаях организм вырабатывает нейротоксины в ответ на возникновение угрозы иммунной системе. Также многочисленные нейротоксины присутствуют в окружающей природной среде; их вырабатывают ядовитые животные; тяжелые металлы, такие как свинец, также являются нейротоксинами. Иногда нейротоксины применяются властями некоторых стран для оказания противодействия массовым беспорядкам и ведения войны. Нейротоксины, используемые в подобных целях, обычно называются нервно-паралитическими веществами.

Воздействие нейротоксинов

Воздействие нейротоксинов может вызывать головокружение, тошноту, потерю контроля над движениями, паралич, ухудшение зрения, судороги и инсульт. В тяжелых случаях последствия отравления могут включать кому и в итоге смерть из-за отключения нервной системы. В частности, организм начинает быстро разрушаться, когда нейротоксины подавляют функцию вегетативной нервной системы, так как прекращается выполнение ряда важных задач.

Отравление

В случае острого отравления пострадавший подвергается внезапному воздействию определенной дозы нейротоксина. Примером острого отравления является укус змеи. Хроническое отравление предполагает медленное воздействие нейротоксина в течение определенного периода времени. Примером хронического отравления может служить отравление тяжелыми металлами, при котором пострадавший каждый день невольно получает небольшие количества нейротоксина.

Проблема с тяжелыми металлами заключается в том, что они накапливаются в организме, а не выводятся из него, поэтому в определенный момент пострадавший заболевает.

Для лечения отравления нейротоксинами может использоваться ряд техник. Многие из них основываются на поддерживающей терапии, делающей возможным выполнение задач, с которыми организм не может справляться до тех пор, пока состояние пациента не стабилизируется. Если это происходит, пациент может восстанавливаться, однако впоследствии ему зачастую приходится сталкиваться со связанными с отравлением побочными эффектами. В некоторых случаях для блокирования функции нейротоксинов или вымывания их из организма используются химические вещества. В других случаях лекарства от отравления может не быть, и целью лечения является обеспечение пациенту комфорта.

Источник: wisegeek.com
Фото: newearth.media

Рак поджелудочной железы весьма распространен. Лечение рака поджелудочной железы определяется в зависимости от места и стадии рака. Вариант лечения выбирается исходя из возраста и общего состояния здоровья пациента. Лечение рака направлено на удаление рака, когда это возможно, или предотвращение дальнейшего роста опухоли. Если рак поджелудочной железы диагностируется на поздней стадии, и какой-либо вариант лечения по…

Болезнь Паркинсона может коснуться каждого. Люди, страдающие болезнью Паркинсона, требуют большой заботы и внимания. Пациенту становится очень неприятно, когда он не может понять других или позаботиться о себе. В это время оказывайте поддержку пациенту. Не сердитесь и не раздражайте пациента, когда он вас не понимает. Говорите четко, положительно и общайтесь с пациентом. Зрительный контакт необходим,…

Вестибулярная система может страдать от определенных расстройств, которые варьируются от лабиринтита до доброкачественного пароксизмального позиционного головокружения, которые могут не только влиять на слуховые способности человека, но также приводить к ряду других проблем со здоровьем. Ухо не только обеспечивает слух, но и помогает поддерживать равновесие в нашей повседневной деятельности. В наших ушах есть определенные жидкости, которые…