Состояние ауторегуляции мозгового кровотока при низком функциональном значении приводящего сосуда мальформации. Ауторегуляция мозгового кровотока и механизм цефалгий при артериальной гипертензии Ауторегуляция мозгового кровообращения

  1. Zweifel С, Dias С, Smielewski P, Czosnyka M. Continuous time-domain monitoring of cerebral autoregulation in neurocritical care. Medical Engineering and Physics . 2014 1 May;36: Issue 5:638-645. https://doi.org/10.1016/j.medengphy.2014.03.002
  2. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev . 1959;39:183-238.
  3. Johnson U, Nilsson P, Ronne-Engström E, Howells T, Enblad P. Favorable outcome in traumatic brain injury patients with impaired cerebral pressure autoregulation when treated at low cerebral perfusion pressure levels. Neurosurgery . 2011;68:714-722. https://doi.org/10.1227/neu.0b013e3182077313
  4. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature . 2010;468:232-243. https://doi.org/10.1038/nature09613
  5. Betz E. Cerebral blood flow: Its measurement and regulation. Physiol Rev . 1972;52:595-630. https://doi.org/10.1152/physrev.1972.52.3.595
  6. Bor-Seng-Shu E, Kitaw S, Figueiredo EG, Paiva wS, Fonoff ET, Teixeira MJ, Panerai RB. Cerebral hemodynamics: concepts of clinical Importance. Arq Neuropsiquiatr. 2012;70(5):357-365. https://doi.org/10.1590/s0004-282x2012000500010
  7. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma. 2007;24(Suppl 1):S45-S54. https://doi.org/10.1089/neu.2007.9990
  8. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Neural Scand . 1960;36(Suppl 149):1-193. https://doi.org/10.1097/00005072-196207000-00018
  9. Risberg J, Lundberg N, lngvar DH. Regional cerebral blood volume during acute transient rises of the intracranial pressure (plateau waves). J Neurosurg . 1969;31:303-310. https://doi.org/10.3171/jns.1969.31.3.0303
  10. Сzosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery . 1997;41:11-17. https://doi.org/10.1097/00006123-199707000-00005
  11. Ошоров А.В., Савин И.А., Горячев А.С., Попугаев К.А., Потапов А.А., Гаврилов А.Г. Первый опыт применения мониторинга ауторегуляции мозговых сосудов в остром периоде тяжелой черепно-мозговой травмы. Анестезиология и реаниматология. 2008;2:61-67. https://doi.org/10.14412/1995-4484-2008-8
  12. Ошоров А.В., Савин И.А., Горячев А.С., Попугаев К.А., Полупан А.А., Сычев А.А., Гаврилов А.Г., Кравчук А.Д., Захарова Н.Е., Данилов Г.В., Потапов А.А. Плато волны внутричерепного давления у пострадавших с тяжелой черепно-мозговой травмой. Анестезиология и реаниматология . 2013;4:44-50.
  13. Obrador S, Pi-Suiier j. Experimental swelling of the brain. Arch Neural Psychiatry . 1943;49:826-830. https://doi.org/10.1001/archneurpsyc.1943.02290180050005
  14. Ishii S. Brain swelling. Studies of structural, physiological and biochemical alterations. In: Caveness WH, Walker AF, eds. Head Injury Conference Proceedings . Philadelphia: Lippincott, 1966;276-299.
  15. Meyer JS, Teraura T, Sakamoto K, Kondo A. Central neurogenic control of cerebral blood flow. Neurology . 1971;21:247-262. https://doi.org/10.1212/wnl.21.3.247
  16. Ladecola C, Nakai M, Arbit E, Reis D. Global cerebral vasodilatation elicited by focal electrical stimulation within the dorsal medullary reticular formation in anesthetized rat. J Cereb Blood Flow Metab . 1983;3:270-279. https://doi.org/10.1038/jcbfm.1983.41
  17. Maeda M, Matsuura S, Tanaka K, Katsuyama J, Nakamura T, Sakamoto H, Nishimura S. Effects of electrical stimulation on intracranial pressure and systemic arterial blood pressure in cats. Part I: Stimulation of brain stem. Neurol Res . 1988a Jun;10(2):87-92. https://doi.org/10.1080/01616412.1988.11739821
  18. Александрова Е.В., Тоноян А.С., Сычев А.А., Крюкова К.К. Активность симпато-адреналовой системы в остром периоде тяжелой черепно-мозговой травмы: значение нейроанатомических факторов. Вестник РФФИ . 2016;2(90):41-49. https://doi.org/10.22204/2410-4639-2016-090-02-41-49
  19. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet . 1974 Jul 13;2(7872):81-84. https://doi.org/10.1016/S0140-6736(74)91639-0
  20. Jennett B, Plum F. Persistent vegetative state after brain damage: A syndrome in search of a name. Lancet . 1972;1:734-737. https://doi.org/10.1016/S0140-6736(72)90242-5
  21. Firsching R, Woischneck D, Klein S, Reissberg S, Döhring W, Peters B. Classification of severe head injury based on magnetic resonance imaging. Acta Neurochir (Wien) . 2001;143:263. https://doi.org/10.1007/s007010170106
  22. Захарова Н.Е., Потапов А.А., Корниенко В.Н., Пронин И.Н., Александрова Е.В., Данилов Г.В., Гаврилов А.Г., Зайцев О.С., Кравчук А.Д., Сычев А.А. Новая классификация травматических поражений головного мозга, основанная на данных магнитно-резонансной томографии. Вестник РФФИ . 2016;2(90):12-19. https://doi.org/10.22204/2410-4639-2016-090-02-12-19
  23. Потапов А.А., Крылов В.В., Гаврилов А.Г., Кравчук А.Д., Лихтерман Л.Б., Петриков С.С., Талыпов А.Э., Захарова Н.Е., Ошоров А.В., Сычев А.А., Александрова Е.В., Солодов А.А. Рекомендации по диагностике и лечению тяжелой черепно-мозговой травмы. Часть 3. Хирургическое лечение (опции). . 2016;2:93-101.https://doi.org/10.17116/neiro201680293-101
  24. Потапов А.А., Крылов В.В., Гаврилов А.Г., Кравчук А.Д., Лихтерман Л.Б., Петриков С.С., Талыпов А.Э., Захарова Н.Е., Ошоров А.В., Сычев А.А., Александрова Е.В., Солодов А.А. Рекомендации по диагностике и лечению тяжелой черепно-мозговой травмы. Часть 2. Интенсивная терапия и нейромониторинг. Вопросы нейрохирургии им. Н.Н. Бурденко . 2016;80(1):98-106. https://doi.org/10.17116/neiro201680198-106
  25. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma . 2007;24 Suppl 1:S45-S54. https://doi.org/10.1089/neu.2007.9989
  26. Niimi T, Sawada T, Kuriyama Y, The effect of dopamine on cerebral circulation and metabolism in man. Jpn J Stroke . 1981;3:318-325.
  27. Ångyán L. Role of the substantia nigra in the behavioral-cardiovascular integration in the cat. Acta Physiol Scand . 1989;74:175-187.
  28. Lin MT, Yang JJ. Stimulation of the nigrostriatal dopamine system produces hypertension and tachycardia in rats. Am J Physiol. 1994 Jun;266(6 Pt 2):H2489-H2496. https://doi.org/10.1152/ajpheart.1994.266.6.H2489
  29. Dampney RAL. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev . 1994;74:323-364. https://doi.org/10.1152/physrev.1994.74.2.323
  30. Sun MK. Central neural organization and control of sympa- thetic nervous system in mammals. Prog Neurobiol . 1995;47:157-233. https://doi.org/10.1016/0301-0082(95)00026-8
  31. Ciriello J, Janssen SA. Effect of glutamate stimulation of bed nucleus of the stria terminalis on arterial pressure and heart rate. Am J Physiol. 1993;265 (Heart Circ Physiol. 34): H1516-H1522. https://doi.org/10.1152/ajpheart.1993.265.5.H1516
  32. Roder S, Ciriello J. Contribution of bed nucleus of the stria terminalis to the cardiovascular responses elicited by stimulation of the amygdala. J Auton Nerv Syst . 1993;45:61-75. https://doi.org/10.1016/0165-1838(93)90362-X
  33. Alexander N, Hirata Y, Nagatsu T. Reduced tyrosine hydroxylase activity in nigrostriatal system of sinoaortic-denervated rats. Brain Res . 1984;299:380-382. https://doi.org/10.1016/0006-8993(84)90724-8
  34. Alexander N, Nakahara D, Ozaki N, Kaneda N, Sasaoka T, Iwata N, Nagatsu T. Striatal dopamine release and metabolism in sinoaortic-denervated rats by in vivo microdialysis. Am J Physiol. 1988;254. (Regulatory Integrative Comp Physiol . 1988;23):R396-R399. https://doi.org/10.1152/ajpregu.1988.254.2.R396
  35. Kirouac GJ, Ciriello J.Cardiovascular depressor responses to stimulation of substantia nigra and ventral tegmental area. Am J Physiol . 1997 Dec;273(6 Pt 2):H2549-H2557. https://doi.org/10.1152/ajpheart.1997.273.6.H2549
  36. Sato A, Sato Y, Uchida S. Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Int J Dev Neurosci . 2001 Jun;19(3):327-337. Review. https://doi.org/10.1016/S0736-5748(01)00017-X
  37. Maeda M, Miyazaki M. Control of ICP and the cerebrovascular bed by the cholinergic basal forebrain. Acta Neurochir Suppl . 1998;71:293-296. https://doi.org/10.1007/978-3-7091-6475-4_85
  38. Gregor K. Wenning, Carlo Colosimo, Felix Geser and Werner Poewe. Multiple system atrophy. Lancet Neurology . 2004;3:93-103. https://doi.org/10.1016/S1474-4422(03)00662-8
  39. Ariza D, Sisdeli L, Crestani CC, Fazan R, Martins-Pinge MC. Dysautonomias in Parkinson’s disease: cardiovascular changes and autonomic modulation in conscious rats after infusion of bilateral 6-OHDA in substantia nigra. Am J Physiol Heart Circ Physiol . 2015 Feb 1;308(3):H250-H257. https://doi.org/10.1152/ajpheart.00406.2014

Наблюдение с низким функциональным значением приводящего сосуда АВМ иллюстрирует клинический пример №6.

Клинический пример №6. Пациентка П., 17 лет, и/б №761 – 2006. Клинический диагноз: «АВМ конвекситальных отделов левой теменной доли.

Эпилептический синдром». По классификации S&M – III типа. АВМ средних размеров (объемом до 6 см3) заполняется из гипертрофированных длинных ветвей левой СМА на уровне М3 – М4 сегментов (рисунок 37, А) с дренированием через расширенные корковые и глубокие вены в верхний сагиттальный, левые сигмовидный и каменистый синусы. По данным

предоперационной ТКДГ выявляли паттерн шунтирования в левой СМА с повышением ЛСК до 171 см/с, снижением ПИ до 0.38. В правой СМА ЛСК (65 см/с) и ПИ (0.83) находились в пределах нормы. При кросс-спектральном анализе спонтанных колебаний САД и ЛСК (рисунок 37, Д) выявлены нормальные значения фазового сдвига (1.2±0.1 рад) в бассейне правой СМА, и существенное его снижение (0.2±0.1 рад) в бассейне левой СМА, участвующем в кровоснабжении АВМ. По данным манжетного теста индекс АРМК (ARI) в правой СМА составил 5 %/с, в левой СМА – снижен до 0. Данные предоперационной оценки АРМК в бассейне приводящего сосуда указывали на выраженные её нарушения.

Пациентке выполнена операция – суперселективная эмболизация АВМ из бассейна левой СМА гистоакрилом с липоидолом (1:3) объемом до 1 мл. Микрокатетер установлен в приводящий сосуд АВМ, барбитуровый тест отрицательный. Индекс потока в приводящем сосуде – 600 мл/мин, ДК в нем – 30 мм рт.ст., что составило 32% от САД (93 мм рт. ст.). Приводящий сосуд расценен как функционально незначимый, после чего произведена эмболизация АВМ. При контрольной ангиографии АВМ не контрастируется, достигнуто тотальное выключение её из кровообращения (рисунок 38 – А).

Нарастания неврологической симптоматики в послеоперационном периоде не отмечено. По данным ТКДГ выявляли отсутствие паттерна шунта, нормализацию ЛСК в левой СМА. По данным кросс-спектрального анализа спонтанных колебаний САД и ЛСК на стороне АВМ (рисунок 38, Г) отмечали повышение фазового сдвига до 0.8±0.2 рад между колебаниями ЛСК на стороне АВМ левой теменной доли и САД в диапазоне М - волн. Кроме того, наблюдали повышение АРМК с обеих сторон до 8 (рисунок 38, В), что свидетельствует о полном её восстановлении в бассейне левой СМА после проведенной

внутрисосудистой операции. Пациентка была выписана в удовлетворительном состоянии по месту жительства (mRs – 0 баллов). При повторной ангиографии через 7 лет после операции

данных за контрастирование АВМ не получено.

А)

Б) В)

Г)

Д)

Рисунок 37. Результаты обследования больной, П., 17 лет, с АВМ левой теменной доли до эндоваскулярного вмешательства. . А – каротидная ангиография слева и ТКДГ в обеих СМА, Б – мониторинг САД и ЛСК обеих СМА; В – манжетный тест; Г – амплитуда медленных колебаний ЛСК и САД в диапазоне В-волн и М-волн; Д – фазовый сдвиг между ЛСК и САД и амплитудный спектр САД в диапазоне М-волн.

Б) В)

Г)

Д)

Рисунок 38. Результаты обследования больной, П., 17 лет, с АВМ левой теменной доли после эмболизации гистоакрилом. А – контрольная каротидная ангиография слева и ТКДГ в обеих СМА, Б – мониторинг САД и ЛСК обеих СМА; В – манжетный тест; Г – амплитуда медленных колебаний ЛСК и САД в диапазоне В-волн и М-волн; Д – фазовый сдвиг между ЛСК и САД и амплитудный спектр САД в диапазоне М-волн.

Таким образом, у пациентки с АВМ левой теменной доли, расположенной в функционально значимой зоне, в предоперационном периоде было диагностированы низкие показатели состояния АРМК в бассейне приводящего сосуда АВМ, что в совокупности с интраоперационными тестами, позволило установить его низкое функциональное значение и произвести тотальную эмболизацию АВМ без неврологических осложнений.


Кузнецова Вера Феодосиевна (RU)
Тугдумов Баир Владиславович (RU)
Федин Анатолий Иванович (RU)

Изобретение относится к медицине, а именно к сосудистой хирургии. Пациенту, страдающему атеросклерозом аорты, артерий таза и нижних конечностей, без поражения брахиоцефальных артерий, в предоперационном периоде проводят ультразвуковое исследование. Оценивают абсолютные показатели скоростей кровотока по средней мозговой артерии и внутренней яремной вене, а также процент их изменения после 5-минутной компрессионной пробы. Проводят 10-дневный курс лечения препаратом «Берлитион». Повторно в динамике оценивают ауторегуляцию мозгового кровотока по приведенному выше протоколу. Способ позволяет оценить эффективность подготовки больных к реконструктивным сосудистым хирургическим вмешательствам. 1 табл., 2 ил.

Изобретение относится к медицине, а именно к сосудистой хирургии, и может быть использовано для коррекции нарушений ауторегуляции мозгового кровотока при атеросклерозе.

Основная функция сосудистой системы головного мозга заключается в минимизации отклонений его циркуляторного и биохимического гомеостаза при различных физиологических и патофизиологических состояниях. Это предполагает наличие сложной структурно-функциональной организации процесса собственного регулирования мозгового кровообращения.

Ауторегуляция - одно из фундаментальных свойств мозгового кровообращения. Она имеет принципиальное значение для адекватного кровоснабжения головного мозга и характеризуется способностью мозговых сосудов сохранять относительно неизменной объемную скорость мозгового кровотока при изменении перфузионного давления (разницы между системным артериальным и внутричерепным) в широких пределах - от 50 до 170 мм рт.ст. При выходе перфузионного давления за эти пределы наступает неизбежный «срыв» ауторегуляции. В этом случае формируется линейная зависимость мозгового кровотока от динамики внутрисосудистого давления.

При атеросклерозе как системном сосудистом заболевании может возникать дискоординация тонуса сосудов головного мозга с неизбежным изменением параметров ауторегуляции. Оперативные вмешательства, выполняемые у таких больных, как на сосудах головного мозга, так и на артериях других органов (коронарных, почечных, аорте, артериях нижних конечностей) могут приводить к колебаниям перфузионного давления не только во время операции, но и в послеоперационном периоде с возможностью возникновения гемодинамического нарушения мозгового кровообращения.

В связи с этим существует высокая потребность в правильной оценке возможностей ауторегуляции еще в предоперационном периоде, что может позволить вовремя отказаться от хирургического лечения или провести специфическую терапию, направленную на нормализацию реактивности мозгового кровотока.

Следует, отметить, что среди многих патофизиологических механизмов ишемического повреждения мозговой ткани при сосудисто-мозговой недостаточности на фоне атеросклероза, который способен инициировать развитие нарушений ауторегуляции сосудов головного мозга, большинство авторов одной из главных составляющих считают оксидантный стресс.

Особая опасность развития оксидантного стресса в ЦНС определяется значительной интенсивностью окислительного метаболизма мозга, утилизирующего до 50% всего потребляемого кислорода. Дополнительными факторами развития оксидантного стресса в ткани мозга являются высокое содержание в ней липидов (около 50% сухого вещества), ненасыщенные связи которых являются субстратом для их перекисного окисления (ПОЛ); аскорбата (в 100 раз больше, чем в периферической крови), участвующего в качестве прооксиданта в неферментативных процессах ПОЛ. С другой стороны, активность ферментативных антиоксидантных систем (каталазы, глутатионпероксидазы) в мозге значительно ниже, чем в других тканях, что еще больше повышает риск развития оксидантного стресса .

В связи с важностью именно оксидантного стресса в патогенезе повреждения мозговой ткани при атеросклерозе многие современные авторы строят концепции лечения сосудисто-мозговой недостаточности и нарушений ауторегуляции мозгового кровотока на основе метода, корригирующего процессы перекисного окисления - антиоксидантной терапии.

В последние годы активно изучается природный антиоксидант - тиоктовая (α-липоевая) кислота. Метаболическая роль и антиоксидантные свойства α-липоевой кислоты позволяют применять ее при лечении и профилактики многих заболеваний.

Одним из препаратов, содержащих α-липоевую кислоту, является берлитион. Доказаны его высокие возможности в ингибировании свободных радикалов, характерно его свойство уменьшать активацию перекисного окисления липидов, нормализовывать синтез оксида азота и повышать активность антиоксидантной системы [Рахимова Г.Н., Джураева А.Ш., Акбаров А.З., Халимова З.Ю. Оценка эффективности применения берлитиона при лечении различных форм диабетической нейропатии // Международный медицинский журнал. 2001 г. №4].

Данный метод лечения сосудисто-мозговой недостаточности принят нами за прототип.

Однако способ-прототип имеет и некоторые существенные недостатки, связанные с тем, что антиоксиданты, в том числе и Берлитион, в основном используются для борьбы с оксидантным стрессом при лечении острой и хронической ишемии нервной ткани, в том числе и головного мозга, в то время как в литературе не встречается информация о возможности их применения для коррекции сосудистой ауторегуляции. Кроме этого, тактика коррекции ауторегуляции мозгового кровотока до последнего времени четко не определена, клиническая эффективность оценивается, как правило, по субъективным ощущениям пациентов или положительной динамике грубой неврологической симптоматики. Восстановление же реактивности мозговых сосудов у больных с системным атеросклерозом может позволить изменить тактику лечения этой группы пациентов, улучшить результаты как консервативной терапии, так и хирургических вмешательств, снизить процент послеоперационных осложнений.

Целью изобретения является разработка эффективного способа коррекции нарушений ауторегуляции мозгового кровотока при атеросклерозе в плане подготовки больных к реконструктивным сосудистым вмешательствам.

Поставленная цель достигается тем, что пациенту, страдающему системным атеросклерозом в предоперационном периоде определяют функциональные возможности ауторегуляции мозгового кровотока, назначают препарат «Берлитион» в дозе 600 мг в сутки, после чего повторно в динамике оценивают ауторегуляцию мозгового кровотока и при достоверном улучшении ее параметров судят об эффективности подготовки больных к реконструктивным сосудистым хирургическим вмешательствам.

Новым в изобретении является то, что «Берлитион» используется для предоперационной подготовки больных атеросклерозом к реконструктивным сосудистым хирургическим вмешательствам, а эффективность этой подготовки определяется посредством объективного инструментального метода - ультразвуковой оценки ауторегуляции мозгового кровотока.

Предложенный способ осуществляется следующим образом. Ультразвуковую оценку ауторегуляции мозгового кровотока выполняли по разработанной в клинике методике на ультразвуковом аппарате "Philips - HDI 5000" (США). Для измерения скорости кровотока по средней мозговой артерии использовали транскраниальный датчик с частотой 2 МГц, по внутренней яремной вене - линейный датчик с частотой 6-10 МГц. В состоянии физиологического покоя определялось системное артериальное давление на плечевой артерии, визуализировались средняя мозговая артерия и внутренняя яремная вена, измерялись средние линейные и объемные скорости кровотока. Далее пациенту на 5 минут накладывали пневматические манжеты на обе нижние конечности в верхней трети бедра до полного прекращения кровотока по артериям нижних конечностей ниже места компрессии. По истечении 5-минутного временного интервала одномоментно снимали пневматические манжеты и определение системного артериального давления, а также скоростей кровотока в средней мозговой артерии и внутренней яремной вене повторялось. После этого оценивались абсолютные показатели скоростей кровотока, а также процент их изменения после компрессионной пробы. Указанные сосуды были выбраны нами в связи с тем, что средняя мозговая артерия является прямым продолжением внутренней сонной артерии, поставляющей головному мозгу основной объем артериальной крови, а внутренняя яремная вена представляет собой основной сосуд, обеспечивающий отток крови из полости черепа.

Далее пациенту внутривенно назначался препарат «Берлитион» по 600 мг в сутки на протяжении 10 дней, после чего в динамике повторялось ультразвуковое определение ауторегуляции мозгового кровотока по приведенному выше протоколу. В случае достоверного улучшения параметров ауторегуляции констатировали факт подготовки пациента к реконструктивному сосудистому хирургическому вмешательству.

Для выявления эффективности предложенного метода в подготовке больных атеросклерозом к реконструктивным сосудистым хирургическим вмешательствам было проведено специальное исследование, в котором приняли участие 67 человек, разбитых на две группы.

Клиническая группа была представлена 32 пациентами (все мужчины), страдающими облитерирующим атеросклерозом артерий нижних конечностей с различными стадиями хронической артериальной недостаточности. Возраст этих больных был от 46 до 72 лет (средний возраст 57,46±5,15 лет). В эту группу были отобраны пациенты только с преимущественной локализацией атеросклероза в аорте, артериях таза и нижних конечностей без гемодинамических поражений брахиоцефальных артерий. У 21 из них была IIБ стадия ишемии по Фонтейну-Покровскому и у 11 - III стадия.

Контрольную группу составили 35 добровольцев мужского пола в возрасте от 20 до 25 лет.

Как показали результаты нашего исследования, до лечения у пациентов клинической группы имеются достоверные отклонения гемодинамических показателей по сравнению с контрольной группой (см. таблицу, *р<0,05). В первую очередь это касается внутренней яремной вены, отток крови по которой косвенно отражает величину тканевого давления головного мозга. Если в контрольной группе имеется прогрессивное увеличение данного показателя с максимальным значением в диапазоне от 90 до 120 секунды после снятия манжет с бедер, то у пациентов с периферическим атеросклерозом увеличение тока венозной крови носит несущественный характер с коротким пиком максимального значения на 90-й секунде компрессионной пробы. В целом на протяжении всего исследования скоростные характеристики внутренней яремной вены в клинической группе больных были достоверно меньше по сравнению с контрольной группой (р<0,05). Связано это может быть с неадекватным функциональным состоянием сосудов микроциркуляторного русла, развивающегося на фоне атеросклероза, приводящего к увеличению микровязкости клеточных мембран как эндотелия, так и форменных элементов крови [Лопухин Ю.М., Арчаков А.И., Владимиров Ю.А. // Холестериноз. // М. - 1993]. В норме основная роль мелких артериоло-венулярных шунтов заключается в быстром перераспределении артериальной крови в венозное сосудистое русло для подержания адекватного кровоснабжения органа. Физиологическое значение артериоло-венулярных анастомозов заключается в том, что при необходимости разгрузки капиллярного русла и ускорении кровообращения органа включаются пути юкстакапиллярного (шунтирующего) кровотока. Гемодинамическое значение шунтирующего кровотока вытекает из того, что диаметр анастомозов почти в 10 раз больше диаметра капилляров и в перерасчете на единицу длины объем кровотока в анастомозах в 10 тысяч раз превышает его объем в капиллярах. Так, 1 мкл крови у здорового человека проходит через капилляр диаметром 10 мкм в течение 6 часов, в то время как тот же объем крови проходит через артериоло-венулярный анастомоз всего за 2 секунды [Куприянов В.В., Караганов Я.Л., Козлов В.И. Микроциркуляторное русло. М. - Медицина. - 1975.; Rossi M., Carpi A. Skin microcirculation in peripheral arterial obliterative disease // Biomed. Pharmacother. - 2004. - Oct. - Vol.58(8). - P.427-431]. Таким образом, артериоло-венулярные шунты в нормальных условиях служат средством борьбы с сопротивлением току крови на уроне капиллярной сети - при открытии анастомозов увеличивается давление в венозном русле и возрастает ток крови в нем. Без имеющегося биологического механизма быстрого перераспределения крови при увеличении ее притока возникало бы полнокровие органа с развитием интерстициального отека. Для головного мозга, находящегося в закрытой черепной коробке, это грозило бы смертельными осложнениями.

У больных клинической группы на фоне низкого оттока венозной крови по внутренней яремной вене отмечается и неадекватное увеличение притока крови по средней мозговой артерии, достоверно отличающееся от соответствующего показателя контрольной группы (см. таблицу, фиг.1, р<0,05). По-видимому, это связано с компенсаторными механизмами, препятствующими развитию полнокровия головного мозга. В целом же перфузионное давление, представляющее собой разницу между артериальным и тканевым давлением у пациентов с периферическим атеросклерозом, при выполнении компрессионной пробы на протяжении большего времени исследования достоверно ниже контрольной группы. Выполнение таким пациентам объемных реконструктивных операций на аорте и магистральных артериях конечностей со снижением артериального давления во время вмешательства или возникновением синдрома «обкрадывания» чревато развитием гемодинамического нарушения мозгового кровообращения.

После 10-дневного внутривенного курса лечения пациентов препаратом Берлитион в дозе 600 мг в сутки установлено улучшение гемодинамических показателей как по внутренней яремной вене, так и по средней мозговой артерии (см. таблицу, фиг.2). Кривые этих характеристик, хотя полностью и не достигают значений контрольной группы (фиг.2), но уже в большинстве случаев их отличия не носят достоверный характер (см. таблицу, р>0,05). На наш взгляд, это может быть связано с угнетением вследствие приема Берлитиона процессов перекисного окисления липидов, снижением влияния оксидантного стресса на ткани головного мозга, что привело к нормализации тонуса и функции сосудов микроциркуляторного русла и, как следствие, улучшению макрогемодинамики на уровне внутренней сонной артерии и внутренней яремной вены. Подобные положительные изменения в показателях ауторегуляции мозгового кровотока позволяют надеяться на благоприятный исход со стороны головного мозга при возможном выполнении у этих больных объемных реконструктивных сосудистых вмешательств на аорте, магистральных артериях таза и нижних конечностей.

Таким образом, предложенный нами метод коррекции нарушений ауторегуляции мозгового кровотока является высокоэффективным у больных атеросклерозом с хронической артериальной недостаточностью нижних конечностей. Это может быть использовано в предоперационной подготовке таких пациентов к реконструктивным сосудистым вмешательствам для снижения вероятности развития гемодинамического острого нарушения мозгового кровообращения в раннем послеоперационном периоде.

Показатели изменения максимальной скорости кровотока до и после компрессионной пробы (в %) по средней мозговой артерии и внутренней яремной вене
Этапы измерения Контрольная группа Клиническая группа
До лечения После лечения
Средняя мозговая артерия
15 сек +7,93±1,02 +6,15±1,18 +6,97±1,22
30 сек +13,72±1,25 +14,31±2,24 +13,14±1,36
45 сек +20,15±3,15 +21,68±3,75 +19,75±3,03
60 сек +28,33±4,29 +29,42±5,27 +26,44±3,52
75 сек +29,84±4,72 +20,63±3,25* +27,89±4,39
90 сек +30,40±4,89 +5,90±1,93* +28,77±4,65
105 сек +25,36±3,75 +2,82±0,71* +23,16±3,49
120 сек +15,71±2,04 +1,11±0,10* +13,81±2,12
180 сек +5,45±0,62 +2,15±0,12* +4,33±0,79
240 сек +2,30±0,13 +1,23±0,19 +1,82±0,11
Внутренняя яремная вена
15 сек +1,51±0,24 +0,11±0,04 +1,20±0,31
30 сек +4,26±0,36 +2,47±0,21 +3,96±0,59
45 сек +7,93±0,92 +4,36±0,61* +6,78±0,87
60 сек +11,43±1,07 +7,12±0,85* +10,65±1,58
75 сек +19,23±2,81 +12,33±1,96* +17,49±2,66
90 сек +32,56±3,44 +18,75±2,15* +30,55±3,50
105 сек +30,32±3,98 +11,04±1,77* +30,71±3,44
120 сек +31,10±3,80 +6,19±0,49* +29,49±3,15
180 сек +18,77±2,09 +2,54±0,20* +16,80±1,91
240 сек +7,50±0,99 +1,42±0,13* +6,27±0,75
Примечания:
PSV - максимальная линейная скорость кровотока;
EDV - минимальная линейная скорость кровотока;
ТАР - средняя линейная скорость кровотока;
р<0,05 - вычислено по отношению к контрольной группе.

Способ оценки эффективности подготовки больных к реконструктивным сосудистым хирургическим вмешательствам, отличающийся тем, что пациенту, страдающему атеросклерозом аорты, артерий таза и нижних конечностей, без поражения брахиоцефальных артерий, в предоперационном периоде проводят ультразвуковое исследование ауторегуляции мозгового кровотока, оценивают абсолютные показатели скоростей кровотока по средней мозговой артерии и внутренней яремной вене, а также процент их изменения после 5-минутной компрессионной пробы на верхней трети бедер обеих нижних конечностях, проводят 10-дневный курс лечения препаратом «Берлитион» в дозе 600 мг в сутки, внутривенно, после чего повторно в динамике оценивают ауторегуляцию мозгового кровотока по приведенному выше протоколу, и при достоверном улучшении ее параметров судят об эффективности подготовки больных к реконструктивным сосудистым хирургическим вмешательства.

2. Ауторегуляция мозгового кровообращения

В головном мозге, так же как в сердце и почках, даже значительные колебания АД не оказывают существенного влияния на кровоток. Сосуды мозга быстро реагируют на изменение ЦПД. Снижение ЦПД вызывает вазодилатацию сосудов мозга, увеличение ЦПД - вазоконстрикцию. У здоровых людей MK остается неизменным при колебаниях АДср в пределах от 60 до 160 мм рт. ст. (рис. 25-1). Если АДср выходит за границы этих значений, то ауторегуляция MK нарушается. Увеличение АДср до 160 мм рт. ст. и выше вызывает повреждение ге-матоэнцефалического барьера (см. ниже), чреватое отеком мозга и геморрагическим инсультом. хронической артериальной гипертонии кривая ауторегуляции мозгового кровообращения (рис. 25-1) смещается вправо, причем сдвиг затрагивает и нижнюю, и верхнюю границы. При артериальной гипертонии снижение АД до обычных значений (меньше измененной нижней границы) приводит к уменьшению MK, в то время как высокое АД не вызывает повреждения мозга. Длительная гипотензивная терапия может восстановить ауторегуляцию мозгового кровообращения в физиологических границах.

Существуют две теории ауторегуляции мозгового кровообращения - миогенная и метаболическая. Миогенная теория объясняет механизм ауторегуляции способностью гладкомышечных клеток церебральных артериол сокращаться и расслабляться в зависимости от АДср. Согласно метаболической теории, тонус церебральных артериол зависит от потребности мозга в энергетических субстратах. Когда потребность мозга в энергетических субстратах превышает их доставку, в кровь выделяются тканевые метаболиты, которые вызывают церебральную вазодилатацию и увеличение MK. Этот механизм опосредуют ионы водорода (их роль в церебральной вазодилатации описана раньше), а также другие вещества - оксид азот (NO), аденозин, простагландины и, возможно, градиенты ионной концентрации.

3. Внешние факторы

Парциальное давление CO 2 и O 2 в крови

Парциальное давление CO 2 в артериальной крови (PaCO 2) - наиболее важный внешний фактор, влияющий на MK. MK прямо пропорционален PaCO 2 в пределах от 20 до ЗОммрт. ст. (рис. 25-2). Увеличение PaCO 2 на 1 мм рт. ст. влечет за собой мгновен ное повышение MK на 1-2 мл/100 г/мин, уменьшение PaCO 2 приводит к эквивалентному снижению MK. Этот эффект опосредуется через рН цереброспинальной жидкости и вещества мозга. Поскольку CO 2 , в отличие от ионов, легко проникает, через гематоэнцефалический барьер, то на MK влияет именно острое изменение PaCO 2 , а не концентрации HCO 3 ". Через 24-48 ч после начала гипо- или гиперкапнии развивается компенсаторное изменение концентрации HCO 3 " в спинномозговой жидкости. При выраженной гипервентиляции (PaCO 2 < 20 мм рт. ст.) даже у здоровых людей на ЭЭГ появляется картина, аналогичная таковой при повреждении головного мозга. Острый метаболический ацидоз не оказывает значительного влияния на MK, потому что ион водорода (H +) плохо проникает через гематоэнцефалический барьер. Что касается PaO 2 , то на MK оказывают воздействие только его значительные изменения. В то время как гипероксия снижает MK не более чем на 10 %, при тяжелой гипоксии (PaO 2 < 50 мм рт. ст.) MK увеличивается в гораздо большей степени (рис. 25-2).

Температура тела

Изменение MK составляет 5-7 % на 1 0 C. Гипотермия снижает CMRO 2 и MK, в то время как гипер-термия оказывает обратный эффект. Уже при 20 0 C на ЭЭГ регистрируют изолинию, но дальнейшее уменьшение температуры позволяет еще сильнее снизить потребление кислорода мозгом. При температуре выше 42 0 C потребление кислорода мозгом также снижается, что, по-видимому, обусловлено повреждением нейронов.

Вязкость крови

У здоровых людей вязкость крови не оказываетзначительного влияния на MK.

Рис. 25-2. Влияние PaO 2 и PaCO 2 Ha мозговой кровоток


Вязкость кровив наибольшей степени зависит от гематокрита, поэтому снижение гематокрита уменьшает вязкость и увеличивает MK. К сожалению, помимо этого благоприятного эффекта, снижение гематокрита имеет и отрицательную сторону: оно уменьшает кислородную емкость крови и, соответственно, доставку кислорода. Высокий гематокрит, например при тяжелой полицитемии, увеличивает вязкость крови и снижает MK. Исследования показали, что для лучшей доставки кислорода к мозгу гематокрит должен составлять 30-34 %.

Вегетативная нервная система

Внутричерепные сосуды иннервируются симпатическими (вазоконстрикторными), парасимпатическими (вазодилатирующими) и нехолинергическими неадренергическими волокнами; нейротрансмитте-ры в последней группе волокон - серотонин и вазо-активный интестинальный пептид. Функция вегетативных волокон сосудов мозга в физиологических условиях неизвестна, но продемонстрировано их участие при некоторых патологических состояниях. Так, импульсация по симпатическим волокнам pis верхних симпатических ганглиев может значительно сузить крупные мозговые сосуды и уменьшить MK. Вегетативная иннервация мозговых сосудов играет важную роль в возникновении церебрального вазоспазма после Ч MT и инсульта.

Гематоэнцефалический барьер

Между эндотелиальными клетками мозговых сосудов практически отсутствуют поры. Малочисленность пор - основная морфологическая особенность гематоэнцефалического барьера. Липидный барьер проницаем для жирорастворимых веществ, но значительно ограничивает проникновение ионизированных частиц и крупных молекул. Таким образом, проницаемость гематоэнцефалического барьера для молекулы какого-либо вещества зависит от ее размера, заряда, липо-фильности и степени связывания с белками крови. Углекислый газ, кислород и липофильные вещества (к которым относят большинство анестетиков) легко проходят через гематоэнцефалический барьер, в то время как для большинства ионов, белков и крупных молекул (например, маннитола) он практически непроницаем.

Вода свободно проникает через гематоэнцефалический барьер по механизму объемного тока, а перемещение даже небольших ионов затруднено (время полу выравнивания для натрия составляет 2-4 ч). В результате быстрые изменения концентрации электролитов плазмы (а значит, и осмолярности) вызывают преходящий осмотический градиент между плазмой и мозгом. Остро возникшая гипер-тоничность плазмы приводит к перемещению воды из вещества мозга в кровь. При острой гипотонич-ности плазмы, наоборот, происходит перемещение воды из крови в вещество мозга. Чаще всего равновесие восстанавливается без особых последствий, но в ряде случаев существует опасность быстро развивающихся массивных перемещений жидкости, чреватых повреждением мозга. Следовательно, значительные нарушения концентрации натрия или глюкозы в плазме нужно устранять медленно (см. гл. 28). Маннитол, осмотически активное вещество, которое в физиологических условиях не пересекает гематоэнцефалический барьер, вызывает устойчивое уменьшение содержания воды в мозге и часто используется для уменьшения объема мозга.

Целостность гематоэнцефалического барьера нарушают тяжелая артериальная гипертензия, опухоли мозга, ЧМТ, инсульт, инфекции, выраженная гиперкапния, гипоксия, устойчивая судорожная активность. При этих состояниях перемещение жидкости через гематоэнцефалический барьер определяется не осмотическим градиентом, а гидростатическими силами.

Цереброспинальная жидкость

Цереброспинальная жидкость находится в желудочках и цистернах головного мозга, а также в суб-арахноидальном пространстве ЦНС. Главная функция цереброспинальной жидкости - защита мозга от травмы.

Большая часть цереброспинальной жидкости вырабатывается в сосудистых сплетениях желудочков мозга (преимущественно в боковых). Некоторое количество образуется непосредственно в клетках эпендимы желудочков, а совсем небольшая часть - из жидкости, просачивающейся через периваскулярное пространство сосудов мозга (утечка через гематоэнцефалический барьер). У взрослых образуется 500 мл цереброспинальной жидкости в сутки (21 мл/ч), в то время как объем цереброспинальной жидкости составляет только 150 мл. Из боковых желудочков цереброспинальная жидкость через межжелудочковые отверстия (отверстия Монро) проникает в третий желудочек, откуда через водопровод мозга (сильвиев водопровод) попадает в четвертый желудочек. Из четвертого желудочка через срединную апертуру (отверстие Мажанди) и боковые апертуры (отверстия Люшка) цереброспинальная жидкость поступает в мозжечково-мозговую (большую) цистерну (рис. 25-3), а оттуда - в субарахноидальное пространство головного и спинного мозга, где и цир кулирует до тех пор, пока не всасывается в грануляциях паутинной оболочки больших полушарий. Для образования цереброспинальной жидкости необходима активная секреция натрия в сосудистых сплетениях. Цереброспинальная жидкость изото-нична плазме, несмотря на более низкую концентрацию калия, бикарбоната и глюкозы. Белок поступает в цереброспинальную жидкость только из перивас-кулярных пространств, поэтому его концентрация очень невелика. Ингибиторы карбоангидразы (аце-тазоламид), кортикостероиды, спиронолактон, фу-росемид, изофлюран и вазоконстрикторы уменьшают выработку цереброспинальной жидкости.

Цереброспинальная жидкость всасывается в грануляциях паутинной оболочки, откуда попадает в венозные синусы. Небольшое количество всасывается через лимфатические сосуды мозговых оболочек и периневральные муфты. Обнаружено, что всасывание прямо пропорционально ВЧД и обратно пропорционально церебральному венозному давлению; механизм этого явления неясен. Поскольку в головном и спинном мозге нет лимфатических сосудов, всасывание цереброспинальной жидкости - основной путь возвращения белка из интерстициальных и периваскулярных пространств мозга обратно в кровь.

Внутричерепное давление

Череп представляет собой жесткий футляр с нерастягивающимися стенками. Объем полости черепа неизменен, его занимает вещество мозга (80 %), кровь (12 %) и цереброспинальная жидкость (8 %). Увеличение объема одного компонента влечет за собой равное по величине уменьшение остальных, так что ВЧД не повышается. ВЧД измеряют с помощью датчиков, установленных в боковом желудочке или на поверхности полушарий головного мозга; в норме его величина не превышает 10 мм рт. ст. Давление цереброспинальной жидкости, измеренное при люмбальной пункции в положении больного лежа на боку, достаточно точно соответствует величине ВЧД, полученной с помощью внутричерепных датчиков.

Растяжимость внутричерепной системы определяют, измеряя прирост ВЧД при увеличении внутричерепного объема. Вначале увеличение внутричерепного объема хорошо компенсируется (рис. 25-4), но после достижения определенной точки ВЧД резко возрастает. Основные компенсаторные механизмы включают: (1) смещение цереброспинальной жидкости из полости черепа в субарахноидальное пространство спинного мозга; (2) увеличение всасывания цереброспинальной жидкости; (3) уменьшение образования цереброспинальной жидкости; (4) уменьшение внутричерепного объема крови (главным образом за счет венозной).

Податливость внутричерепной системы неодинакова в разных участках мозга, на нее влияют АД и PaCO 2 . При повышении АД механизмы ауторе-гуляции вызывают вазоконстрикцию сосудов мозга и снижение внутричерепного объема крови. Артериальная гипотония, наоборот, приводит к ва-зодилатации сосудов мозга и увеличению внутричерепного объема крови. Таким образом, благодаря ауторегуляции просвета сосудов MK не изменяется при колебаниях АД. При повышении PaCO 2 на 1 мм рт. ст. внутричерепной объем крови увеличивается на 0,04 мл/100 г.

Концепцию растяжимости внутричерепной системы широко используют в клинической практике. Растяжимость измеряют при введении стерильного физиологического раствора во внутрижелудоч-ковый катетер. Если после инъекций 1 мл раствора ВЧД увеличивается более чем на 4 мм рт. ст., то растяжимость считают значительно сниженной. Снижение растяжимости свидельствует об истощении механизмов компенсации и служит прогностическим фактором уменьшения MK при дальнейшем прогрессировании внутричерепной гипертензии. Устойчивое повышение ВЧД может вызвать катастрофическую дислокацию и вклинение различных участков мозга. Выделяют следующие виды повреждений (рис. 25-5): (1) ущемление поясной извилины серпом мозга; (2) ущемление крючка наметом мозжечка; (3) сдавленна продолговатого мозга при вклинении миндалин мозжечка в большое затылочное отверстие; (4) выпячивание вещества мозга через дефект черепа.


ВЛИЯНИЕ АНЕСТЕТИКОВ И ВСПОМОГАТЕЛЬНЫХ СРЕДСТВ НА ЦНС

Подавляющее большинство общих анестетиков благоприятно воздействует на ЦНС, снижая биоэлектрическую активность мозга. Катаболизм углеводов уменьшается, в то время как запасы энергии в виде АТФ, АДФ и фосфокреатина возрастают. Оценить эффект отдельного препарата очень сложно, потому что на него накладывается действие других средств, хирургическая стимуляция, растяжимость внутричерепной системы, АД и PaCO 2 . Например, гипокапния и предварительное введение тиопентала предотвращают увеличение MK и ВЧД при использовании кетамина pi ингаляционных анестетиков. В этом разделе описано действие каждого препарата в отдельности. Итоговая табл. 25-1 позволяет оценить и сравнить влияние анестетиков и вспомогательных средств на ЦНС. В разделе также обсуждается роль миорелаксантов и средств, оказывающих воздействие на сосудистый тонус.

Об. % благоприятный эффект снижения этого параметра, достигаемый при анестезии смесью закиси азота и кислорода (1:1) с гипервентиляцией [Столкарц И.3., 1978]. Общая анестезия эфиром, как и азеотропной смесью фторотана и эфира, при нейрохирургических вмешательствах должна быть резервирована для особых обстоятельств (при проведении анестезиологического пособия в примитивных условиях). С 1962 г., ...

Эта классификация расширяется, включая еще две градации: 6 - больные 1-2-й категорий физическою статуса, оперируемые в экстренном порядке, 7 - больные 3- 5-й категории, оперируемые в экстренном порядке. 1. Определение риска общей анестезии и операции Физическое состояние больного является важнейшим фактором риска, влияющим на конечный результат хирургического лечения больного. По данным...