Обмен энергии в организме человека физиология. Тема: Физиология энергетического обмена






Клеточная регуляция Клеточная регуляция базируется на особенностях взаимодействия фермента и субстрата. Фермент как биологический катализатор изменяет скорость реакции, соединяясь с субстратом и образовывая комплекс фермент - субстрат. После того, как произошли изменения в субстрате, фермент выходит из этого комплекса неповрежденным и начинает новый цикл. базируется на особенностях взаимодействия фермента и субстрата. Фермент как биологический катализатор изменяет скорость реакции, соединяясь с субстратом и образовывая комплекс фермент - субстрат. После того, как произошли изменения в субстрате, фермент выходит из этого комплекса неповрежденным и начинает новый цикл.


Гуморальная регуляция Гуморальная регуляция Некоторые гормоны непосредственно регулируют синтез или распад ферментов и проницаемость клеточных оболочек, изменяя в клетке содержание субстратов, кофакторов и ионный состав. Некоторые гормоны непосредственно регулируют синтез или распад ферментов и проницаемость клеточных оболочек, изменяя в клетке содержание субстратов, кофакторов и ионный состав.


Нервная регуляция осуществляется Нервная регуляция осуществляется осуществляется различными путями: - изменением интенсивности функционирования эндокринных желез осуществляется различными путями: - изменением интенсивности функционирования эндокринных желез непосредственной активацией ферментов. Центральная нервная система, действуя на клеточные и гуморальные механизмы регуляции, адекватно изменяет трофику клеток непосредственной активацией ферментов. Центральная нервная система, действуя на клеточные и гуморальные механизмы регуляции, адекватно изменяет трофику клеток


Превращение белков в организме Белки пищи Пищеварительный тракт Аминокислоты крови Клетки разных тканей Печень Переаминирование Дезаминирование аминокислот Аминокислоты печени АмиакКетокислоты МочевинаОкисление Синтез глицерина Синтез жирных кислот Остаточный азот крови ПочкиАзот мочи Ферментов печени Белков печени Белки плазмы крови




Регуляция белкового обмена Центральные механизмы регуляции Гипоталамус Гипофиз Поджелудочная железа Надпочечники Парасимпатические влияния Симпатические влияния Соматотропный гормон Глюкокортикоиды В печени Мышци, лимфоидная ткань Анаболизм Катаболизм Тиреоидныегормоны Инсулин Щитовидная железа


При условии, что все энергетические расходы возобновляются за счет углеводов и жиров, то есть при безбелковой диете, за сутки разрушается приблизительно 331 мг белка на 1 кг массы тела. Для человека массой 70 кг это составляет 23,2 г. Эту величину М. Рубнер назвал «коэффициентом изнашивания». При условии, что все энергетические расходы возобновляются за счет углеводов и жиров, то есть при безбелковой диете, за сутки разрушается приблизительно 331 мг белка на 1 кг массы тела. Для человека массой 70 кг это составляет 23,2 г. Эту величину М. Рубнер назвал «коэффициентом изнашивания».


АЗОТИСТЫЙ БАЛАНС АЗОТИСТЫЙ БАЛАНС Белковый коэффициент - это то количество белка, при расщеплении которого образуется 1 грамм азота. Он равен 6,25 г. Белковый коэффициент - это то количество белка, при расщеплении которого образуется 1 грамм азота. Он равен 6,25 г. Позитивный азотистый баланс - когда белков поступает больше чем выводится. Позитивный азотистый баланс - когда белков поступает больше чем выводится. Негативный азотистый баланс - когда белков поступает меньше чем выводится. Негативный азотистый баланс - когда белков поступает меньше чем выводится. Азотистое равновесие - когда азота с белками поступает столько же, сколько и выводится. Азотистое равновесие - когда азота с белками поступает столько же, сколько и выводится.








СТАНДАРТНЫЕ УСЛОВИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ОСНОВНОГО ОБМЕНА: Утром, натощак. Утром, натощак. При температуре градусов по Цельсию. При температуре градусов по Цельсию. В состоянии полного физического и психического покоя, лежа на спине. В состоянии полного физического и психического покоя, лежа на спине.


Методы определения основного обмена Метод прямой калориметрии с полным газовым анализом. Метод прямой калориметрии с полным газовым анализом. Метод непрямой калориметрии с полным газовым анализом. Метод непрямой калориметрии с полным газовым анализом. Метод непрямой калориметрии с неполным газовым анализом. Метод непрямой калориметрии с неполным газовым анализом. Значение воды для организма Участие в обменных процессах (реакции гидролиза, окисления и т.д.); Участие в обменных процессах (реакции гидролиза, окисления и т.д.); Способствует выведению конечных продуктов обмена; Способствует выведению конечных продуктов обмена; Обеспечивает поддержку температурного гомеостаза; Обеспечивает поддержку температурного гомеостаза; Механическая роль (уменьшает трение между внутренними органами, суставными поверхностями и т.д.); Механическая роль (уменьшает трение между внутренними органами, суставными поверхностями и т.д.); Универсальный растворитель. Универсальный растворитель.

Обмен веществ является одним из основных жизненных свойств организма. Обмен веществ заключается в поступлении в организм из внешней среды различных веществ, в их усвоении, изменении в выделении из организма продуктов распада.

В результате обмена веществ происходит превращение энергии. Потенциальная энергия сложных органических соединений при их расщеплении освобождается и превращается в организме в тепловую, механическую и электрическую.

Показателем интенсивности обмена веществ и энергетических затрат организма является определение освободившейся в организме тепловой энергии. Количество продуцируемой организмом тепловой энергии можно определить методом прямой и непрямой калориметрии. Определение интенсивности обмена веществ с помощью прямой калориметрии сложно. В физиологических и клинических исследованиях используют метод непрямой калориметрии. Метод непрямой калориметрии основан на исследовании энергетических затрат организма по количеству Поглощенного 0 2 и выделенного СО 2 (способ дуглас-Холдена). Энергетический баланс организма рассчитывается как разность прихода и расхода энергии. Приход энергии определяется учетом количества пищевых веществ, потребляемых за сутки, и расчетом калорической ценности пищевых веществ. Расход энергии (общий обмен)

складывается из основного обмена, специфически - динамического действия пищи (СДДП) и рабочей прибавки к основному обмену. Исходной величиной уровня обменных процессов является основной обмен. Основной обмен - это расход энергии, необходимый для поддержания жизнедеятельности всех органов и температуры тела. Определяется основной обмен утром, натощак (через 14-16 час после последнего приема пищи) в положении лежа, при помощи специальных приборов. Человек в этих условиях расходует примерно 1 ккал на 1 кг веса в час.

Для мужчин среднего возраста (35 лет) основной обмен составляет около 1700 - 1800 ккал. Основной обмен мужчин примерно на 10 % выше, чем у женщин. Величина основного обмена зависит от пола, возраста, веса и роста. В патологии основной обмен может значительно изменяться в сторону повышения или понижения, особенно при нарушении деятельности желез внутренней секреции (щитовидной, гипофиза и др.). При гиперфункции щитовидной железы основной обмен может возрасти до 150%.

Физиологические нормы питания в значительной степени зависят от возраста, пола, роста, веса, климатических и географических условий, а также от вида труда. Потребность взрослого населения в энергии определяется родом его труда. По этому признаку все взрослое население разделено на 5 категорий.

Потребность человека в пластическом материале покрывается только в том случае, если пищевой рацион содержит все питательные вещества: бжу. Особенно важно достаточное содержание белка в рационе, т.к. он является основным эластическим материалом. Соотношение между питательными веществами составляет 1:1:3,5. Это соотношение сохраняется в пищевых рационах всех групп населения. При составлении пищевого рациона необходимо руководствоваться следующим.

Обмен веществ в организме. Пластическая rf энергетическая роль

питательных веществ

Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их

единство. Сущность этого обмена заключается в том, что поступающие в организм питательные вещества, после пищеварительных превращений, используются как пластический материал. Энергия, образующаяся при этом восполняет энергозатраты организма. Синтез сложных специфичных для организма веществ из простых соединений, всасывающихся в кровь, называется ассимиляцией или анаболизмом. Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Эти процессы неразрывно связаны. Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТФ и НАДФ. Посредством их энергия, образующаяся в результате диссимиляции, передается для процессов ассимиляции.

Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органелл. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков. Однако из 20 аминокислот, образующих белки, 10 являются незаменимыми. Т.е. они не могут образовываться -в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин. Поэтому состояние белкового обмена можно отгенить по азотистому балансу. Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В 100 г белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступившего азота больше, чем выделенного, это называется положительным азотистым балансом. В организме происходит задержка или ретенция азота. Положительный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс. Его возникновение объясняется преимущественным распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка, которое полностью обеспечивает потребности организма называется белковым оптимумом. Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом. ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.



Жирами организма являются триглицериды, фосфолипиды. и стерины. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Они также являются.аккумулятором энергии в организме, потому что откладываются в жировых депо и -используются по мере необходимости. Жир депо составляют около 15% веса тела. Жиры имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и-органелл. Кроме того, они покрывают внутренние органы. Например околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды являются и источниками эндогенной воды. При окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов и между лопаток. Содержащийся в его жировых клетках полипептид, при охлаждении организма, тормозит ресинтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

Углеводы в основном играют энергетическую роль, так как служат основным источником энергии для клеток. Например, энергетические потребности нейронов покрываются исключительно глюкозой. Они аккумулируются в виде гликогена в печени и мышцах. Углеводы имеют определенное пластическое значение, так как глюкоза необходима для образования иуклеотидов и синтеза некоторых аминокислот.

Ч Методы измерения энергетический баланса организма

Соотношение между количеством энергии, поступившей с пищей, и энергии, выделенной во внешнюю среду называется энергетическим балансом организма Существует 2 метода определения выделяемой организмом энергии.

1 .Прямая калориметрия. Ее принцип основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла, выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой тегшоообменных труб, по которым циркулирует и нагревается вода.

2.Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Это полный газовый анализ.. Данное соотношение называется дыхательным коэффициентом (ДК).

Обмен веществ и энергии - совокупность процессов превращения веществ и энергии происходящая в живых организмах.

И обмен веществ и энергией между организмом и окружающей средой.

Катаболизм - ферментативное расщепление пищевых и собственных молекул с освобождением заключенных в них энергии.

Анаболизм - ферментативный синтез клеточных компонентов совершающийся с потреблением энергии фосфатных связей АТФ.

ОСНОВНЫЕ ЭТАПЫ РАСЩЕПЛЕНИЯ ВЕЩЕСТВ:

1. Пищеварительный гидролиз и всасывание веществ в ЖКТ:

углеводы - моносахариды

белки - аминокислоты

жиры - жирные кислоты и глицерин

2. Промежуточный обмен - образуются продукты, общие для всех видов обмена:

ацетил-КоА

a-кетоглутарат

Высвобождается 1/3 энергии, заключенной в химических связях питательный веществ.

3. Терминальное окисление (цикл Кребса) - освобождается 2/3 энергии, заключенной в пищевых веществах.

Энергия частично используется в сопряженном фосфорилировании и образовании макроэргов (АТФ и др.).

Биологическое значение:

При катаболизме освобождается заключенная в нем энергия, обеспечивающая все функциональные возможности организма.

Нарушения катаболизма:

а) нарушение обмена макроэргов (АТФ)

б) нарушение поступления пластических веществ, обеспечивающих анаболизм.

Анаболизм:

Образование видоспецифических углеводов, жиров, белков, структурных элементов ® рост, размножение и сохранение морфологической целостности.

При нарушении анаболизма:

Нарушение синтеза ферментов, гормонов, необходимых для катаболизма.

При отравлении цианидами инактивация цитохромоксидазы приводит к смерти в течение 5-7 мин.

Суммарный показатель, отражающий состояние обмена веществ - основной обмен (количество энергии, освобождающееся в организме при полном покое, натощак через 12-18 часов после последнего приема пищи, при температуре 16-18 о С; то количество энергии, необходимое организму в состоянии покоя для поддержания его жизнедеятельности).

Понижение основного обмена:



При торможении КБП: сон, наркоз.

Разрушение и атрофии гипофиза гипофункции щитовидной железы

удалении надпочечников, половых желез

избытке инсулина

голодании, коллапсе, почечных отеках

повышении температуры окружающей Среды

Повышение основного обмена:

при резком возбуждении ЦНС

при повышении функции щитовидной железы (гипертиреоидизм)

при введении тироксина, аденамина, СТГ

при опухолях гипофиза

при приеме пищи

при понижении температуры окружающей Среды

при лихорадке

при усилении сердечной деятельности и дыхания

Наибольшее повышение основного обмена в возрасте 5-7 лет.

У женщин основной обмен меньше, чем у мужчин.

Значение:

Нарушение обмена веществ и энергии лежит в основе всех заболеваний.


Причины нарушений обмена веществ:

I. Эндогенного происхождения:

1. Нарушения в генетическом аппарате клеток.

2. Нарушения деятельности нервной и эндокринной систем.

1. Нарушение в генетическом аппарате:

Нарушение синтеза ферментов (энзимопатии)

Нарушение синтеза транспортных белков (Нb - гемоглобинпатии; церулоплазмина - болезнь Вильсона).

Нарушение синтеза иммунных белков.

Нарушение синтеза белковых и пептидных гормонов, структурных белков, биомембран, кофакторов витаминов (Д 3 , В 1 , В 6 , В 12 , Н, a-токоферола)

II. Экзогенного происхождения:

1. Количественные и качественные изменения в составе пищи:

Недостаток незаменимых аминокислот (аргинина - нарушение сперматогенеза); Недостаток жирных кислот, микроэлементов, витаминов).

Несоответствие количества и качества состава пищи энерготратам организма.

2. Поступление в организм чужеродных токсических веществ.

3. Проникновение патогенных микроорганизмов в организм.

4. Сдвиги в величине парциального давления О 2 и СО 2 в воздухе.

5. Появление в атмосфере СО (угарного газа), окислов азота, токсических газов.

6. Накопление в организме тяжелых металлов (As, Cn), канцерогенов.

Конечная точка приложения всех факторов - ферменты.

Нарушения обмена веществ могут быть на 4-х уровнях организации живых существ:

1) Молекулярный уровень (на нем реализуются нарушения обмена на всех других уровнях организации живого).

Причины нарушений обмена на этом уровне:

1. Нарушения в генетическом аппарата

2. Действие ингибиторов ферментов эндо- и экзогенного происхождения.

3. Недостаточное поступление незаменимых аминокислот, жирных кислот, витаминов, микроэлементов.

4. Нарушения обмена веществ на других уровнях.

Характер нарушений:

1. Изменение концентрации участников метаболических реакций.

2. Изменение активности ферментов и скорости их образования.

3. Изменения кофакторов ферментных реакций.

Показатели:

1. Определение активности ферментов в биологических жидкостях и биопсийном материале.

2. Обнаружение сдвигов в химическом составе крови и других биологических жидкостях.

2) Клеточный уровень организации живого.

причины нарушений обмена:

1. Нарушения биомембран, нуклеиновых кислот и белков, липидов.

2. Активация процессов ПОЛ (перекисного окисления липидов).

3. Действие тропных к биомембранам ядов и токсинов.

4. Осмотический шик.

5 Нарушение постоянства внутренней Среды организма.

6. Нарушение нервной и гуморальной регуляции на клеточном уровне.

Характер нарушений:

Повреждение ультраструктур клетки:

митохондрий, лизосом, эндоплазматического ретикулума, плазматической мембраны, нарушения митоза хроматина.

Показатели:

1. Электронная микроскопия.

2. Изменения маркерных ферментов, специфичных для различных органелл клеток.

3. Гистохимическое исследование клеток крови и биопсийного материала.

Изменение цитохромоксидазы - нарушение митохондрий.

3) Органный и тканевой уровень.

Причины нарушения обмена:

1. Органная и тканевая гипоксия (нарушение регионарного кровообращения)

2. Повреждение специфичных метаболических процессов, обеспечивающих сократительную, выделительную, секреторную, обезвреживающую функции.

Характер нарушений:

1. Нарушение специализированной функции.

2. Нарушение адаптации.

Показатели:

1. Биохимический состав крови, ликвора, мочи.

2. Изоферментный спектр и маркерные ферменты.

3. Исследование биологических жидкостей.

4. Анализ крови.

5. Функциональные пробы.

4) Целостный организм.

Причины нарушений обмена:

1. Повреждения НС и желез внутренней секреции.

2. Нарушения иннервации.

3. Повреждения органов, обеспечивающих постоянство внутренней Среды.

Характер нарушений:

1. Нарушение регуляторной функции нервной и эндокринной системы.

2. Сдвиги метаболизм. со

Показатели:

1. Исследование сдвигов ионов, метаболитов в крови и биологических жидкостях.

2. Определение гормонов, медиаторов в биологических жидкостях.

3. Исследование циклических нуклеотидов, простагландинов, кининовой системы.


ТИПОВЫЕ НАРУШЕНИЯ ОБМЕНА ВЕЩЕСТВ

Описание презентации Физиология обмена веществ и энергии. Физиология терморегуляции по слайдам

Физиология обмена веществ и энергии. Физиология терморегуляции ВЫПОЛНИЛ: АЛИМЖАН СЕРЖАН (39 -01)

Обмен веществ (метаболизм) — совокупность химических реакций в живых организмах, обеспечивающих их рост, развитие, процессы жизнедеятельности Пластический обмен или анаболизм (ассимиляция)-синтез органических веществ (углеводы, жиры, белки), с затратой энергии. Энергетический обмен или катаболизм (диссимиляция)- распад органических веществ, с освобождением энергии. Конечными продуктами распада являются углерод, вода, и АТФ.

Различают 4 этапа обмена веществ: 1. Гидролиз пищевых веществ в пищеварительном тракте – ферментативное расщепление питательных веществ. 2. Всасывание конечных продуктов гидролиза в кровь и лимфу. 3. Транспорт питательных и О 2 в клетку – внутриклеточный обмен веществ и энергии. 4. Выделение конечных продуктов обмена веществ.

Клеточная регуляция базируется на особенностях взаимодействия фермента и субстрата. Фермент как биологический катализатор изменяет скорость реакции, соединяясь с субстратом и образовывая комплекс фермент — субстрат. После того, как произошли изменения в субстрате, фермент выходит из этого комплекса неповрежденным и начинает новый цикл.

Гуморальная регуляция Некоторые гормоны непосредственно регулируют синтез или распад ферментов и проницаемость клеточных оболочек, изменяя в клетке содержание субстратов, кофакторов и ионный состав.

Нервная регуляция осуществляется различными путями: — изменением интенсивности функционирования эндокринных желез непосредственной активацией ферментов. Центральная нервная система, действуя на клеточные и гуморальные механизмы регуляции, адекватно изменяет трофику клеток

Белки (80 -100 г) Основной источник белка для организма – белок пищи. Значение белков: Пластическая роль Энергетическая Двигательная функция (актин, миозин). Ферментативная функция (ферменты- белки, обеспечивающие основные функции организма: дыхание, пище 6 варение, выделение. Регуляция белкового обмена- Центры регуляции в ядрах гипоталамуса. Симпатическая нервная система усиливает диссимиляцию белка. Парасимпатическая усиливает синтез белки. Усиливают синтез белков – СТГ, трийодтироксин, тироксин

Незаменимые аминокислоты Валин (мясо, грибы, молочные и зерновые продукты) Изолейцин (куриное мясо, печень, яйца, рыба) Лейцин (мясо, рыба, орехи) Лизин(рыба, яйца, мясо, фасоль) Метионин (молоко, фасоль, рыба, бобы) Треонин (молочные продукты, яйца, орехи) Триптофан (бананы, финики, курица, молочные продукты) Фенилаланин(говядина, рыба, яйца, молоко) Аргинин (семена тыквы, говядина, свинина, кунжут) Гистидин (говядина, курица, чечевица, лосось)

Превращение белков в организме Белки пищи Пищеварительный тракт Аминокислоты крови Клетки разных тканей Печень Переаминирование Дезаминирование аминокислот. Аминокислоты печени Амиак Кетокислоты Мочевина Окисление Синтез глицерина Синтез жирных кислот. Остаточный азот крови. Почки. Азот мочи Ферментов печени Белков печени. Б е л ки п л а зм ы кр о в и

Регуляция белкового обмена Центральные механизмы регуляции Гипоталамус Гипофиз Поджелудочная железа Надпочечники. П ар аси м п ати ч ески е в л и я н и я С и м п а ти ч е с к и е в л и я н и я С о м ато тр о п н ы й го р м о н Глюкокортикоиды В печени М ы ш ц и, л и м ф о и д н ая ткан ь Анаболизм Катаболизм Тиреоид ны егорм оны И н сул и н. Щитовидная железа

Жиры (80 -100 г) Пластическая, энергетическая роль. Жиры всасываются из кишечника в лимфу и кровь в виде глицерина и жирных кислот (образуя мицеллы с желчными кислотами). Регуляция осуществляются гипоталамусом. Распад жиров происходит под действием адреналина, норадреналина СТГ, и тироксина Раздражение симпатической нервной системы – усиливает распад жира. Парасимпатическая – способствует отложению жира.

Превращение жиров в организме Жир пищи (триглицериды) ПИЩЕВОЙ КАНАЛ КРОВЬ ЛИМФАС Е Р Д Ц Е П Е Ч Е Н Ь Т р и гл и ц е р и д ы в в и д е х и л о м и к р о н о в. Жирные кислоты с короткой цепочкой Глицерин Жирные кислоты с длинной цепочкой Ж и р о в ы е д е п о

Углеводы (400 -500 г) Основной источник энергии поступают в виде ди-полисахаридов, всасываются виде моносахаридов. В печени из глюкозы синтезируется гликоген. При уменьшении глюкозы крови – усиливается распад глюкогена печени. Регуляция обмен углеводов: Гипергликемия вызывает раздражение гипоталамуса и коры головного мозга, реализация влияния через вегетативные нервы. Симпатическая нервная система усиливает распад гликогена-гликолиз. Парасимпатическая нервная система усиливает синтез гликогена из глюкозы-гликогенез.

Углеводы пищи Пищевой канал Углеводы крови Мозг ПЕЧЕНЬ МЫШЦА В ПОКОЕ РАБОТАЮЩАЯ МЫШЦА H 2 O + CO 2 Лактат крови. Обмен углеводов в организме Гликоген Пировиноградная кислота Молочная кислота H 2 O + CO

При условии, что все энергетические расходы возобновляются за счет углеводов и жиров, то есть при безбелковой диете, за сутки разрушается приблизительно 331 мг белка на 1 кг массы тела. Для человека массой 70 кг это составляет 23, 2 г. Эту величину М. Рубнер назвал « коэффициентом изнашивания» .

АЗОТИСТЫЙ БАЛАНС Соотношение количества азота, поступившего с пищей и выделенного с мочой и потом, называется азотистым балансом. Белковый коэффициент — это то количество белка, при расщеплении которого образуется 1 грамм азота. Он равен 6, 25 г. Позитивный азотистый баланс — когда белков поступает больше чем выводится. Негативный азотистый баланс — когда белков поступает меньше чем выводится. Азотистое равновесие — когда азота с белками поступает столько же, сколько и выводится.

СТАНДАРТНЫЕ УСЛОВИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ОСНОВНОГО ОБМЕНА: Основной обмен – минимальный уровень энергозатрат для поддержания жизнедеятельности организма в условиях относительно полного физического и эмоционального покоя. Утром, натощак. При температуре 25 -28 градусов по Цельсию. В состоянии полного физического и психического покоя, лежа на спине.

Методы определения основного обмена Метод прямой калориметрии с полным газовым анализом. Метод непрямой калориметрии с неполным газовым анализом.

Значение воды для организма Участие в обменных процессах (реакции гидролиза, окисления и т. д.); Способствует выведению конечных продуктов обмена; Обеспечивает поддержку температурного гомеостаза; Механическая роль (уменьшает трение между внутренними органами, суставными поверхностями и т. д.); Универсальный растворитель.

Терморегуляция ТЕРМОРЕГУЛЯЦИЯ – физиологический процесс, обеспечивающий поддержание постоянной температуры в организме теплокровных животных и человека. Постоянство температуры – результат саморегуляции организма, необходимой для нормальной жизнедеятельности. Температура тела зависит от теплопродукции и теплоотдачи.

Типы терморегуляции Гомойотермные способность живого существа сохранять постоянную температуру тела, независимо от температуры окружающей среды. Пойкилотермные эволюционная адаптация вида или (в медицине и физиологии) состояние организма, при котором температура тела живого существа меняется в широких пределах в зависимости от температуры внешней среды. Гетеротермные Гомойотермные животные, температура тела которых может понижаться при впадении в спячку или оцепенение

Механизмы Терморегуляции Химическая терморегуляция 1) повышение процессов тканевого обмена, интенсивное окисление белков, жиров и углеводов с образованием тепла 2) повышение уровня гормонов щитовидной железы и надпочечников, усиливающих основной обмен и теплообразование Физическая терморегуляция 1) расширение кровеносных сосудов кожи 2) увеличение притока крови в сосуды кожи 3) усиление потоотделения 4) учащение дыхания и испарение воды через легкие, что позволяет организму отдавать излишек тепла

Химическая терморегуляция Теплообразование связано с обменом веществ, с окислением белков, жиров и углеводов. Это экзотермические реакции. Образование тепла в разных органах: В мышцах – 60 -70%. В печени, органах ЖКТ – 20 -30%. В почках и других органах – 10 -20%.

Физическая терморегуляция Пути теплоотдачи: Теплопроведение (при соприкосновении с другими предметами). Конвекция – перенос тепла циркулирующим воздухом. Теплоизлучение (радиация) – излучение тепла инфракрасного диапазона. Испарение (со слизистых, через легкие, потоотделение)

Изотермия – постоянство температуры тела и внутренней среды организма. Изотермия является одним из важнейших показателей гомеостаза Постоянство температуры тела обеспечивается функциональной системой, включающей ряд органов продуцирующих тепло, так и структуры, обеспечивающие теплоотдачу, а также механизмы, регулирующие их деятельность.

Регуляция изотермии Терморецепторы: Периферические (кожа, слизистые, органы ЖКТ). — холодовые рецепторы (колбочки Краузе) — тепловые рецепторы (тельца Руффини) Центральные (гипоталамус, средний мозг, кора больших полушарий) Передние ядра гипоталамуса контролируют физическую терморегуляцию. Задние ядра гипоталамуса контролируют химическую терморегуляцию.

Температура тела человека Температура отдельных участков тела человека различна. Наиболее низкая температура кожи отмечается на кистях и стопах, наиболее высокая - в подмышечной впадине. У здорового человека температура в этой области равна 36- 37° С. В течение суток наблюдаются небольшие подъемы и спады температуры тела человека в соответствии с суточным биоритмом: минимальная температура отмечается в 2- 4 ч ночи, максимальная - в 16- 19 ч. Температура мышечной ткани в состоянии покоя и работы может колебаться в пределах 7° С. Температура внутренних органов зависит от интенсивности обменных процессов. Наиболее интенсивно обменные процессы протекают в печени, температура в тканях печени равна 38- 38, 5° С. Температура в прямой кишке составляет 37- 37, 5° С. Однако она может колебаться в пределах 4- 5° С в зависимости от наличия в ней каловых масс, кровенаполнения ее слизистой и других причин.