Гормоны паращитовидных желез (паратгормоны). Паратгормон и кальцитонин

За обмен кальция и фосфатов в организме отвечают три гормона – кальцитриол, кальцитонин и паратиреоидный гормон.

Кальцитриол

Строение

Представляет собой производное витамина D и относится к стероидам.

Синтез

Образующийся в коже под действием ультрафиолета и поступающие с пищей холекальциферол (витамин D 3) и эргокальциферол (витамин D 2) гидроксилируются в гепатоцитах по С 25 и в эпителии проксимальных канальцев почек по С 1 . В результате формируется 1,25-диоксихолекальциферол (кальцитриол ).

Активность 1α-гидроксилазы обнаружена во многих клетках и значение этого заключается в активации 25-оксихолекальциферола для собственных нужд клетки (аутокринное и паракринное действие).

Регуляция синтеза и секреции

Активируют : Гипокальциемия повышает гидроксилирование витамина D по С 1 в почках через увеличение секреции паратгормона, стимулирующего этот процесс.

Уменьшают : Избыток кальцитриола подавляет гидроксилирование по С 1 в почках.

Механизм действия

Цитозольный.

Мишени и эффекты

Паратиреоидный гормон

Строение

Представляет собой пептид из 84 аминокислот с молекулярной массой 9,5 кДа.

Синтез

Идет в паращитовидных железах. Реакции синтеза гормона высоко активны.

Регуляция синтеза и секреции

Активирует образование гормона гипокальциемия.

Уменьшают высокие концентрации кальция через активацию кальций-чувствительной протеазы , гидролизующей один из предшественников гормона.

Механизм действия

Аденилатциклазный.

Мишени и эффекты

Эффект паратиреоидного гормона заключается в увеличении концентрации кальция и снижении концентрации фосфатов в крови.

Это достигается тремя способами:

Костная ткань

  • при высоком уровне гормона активируются остеокласты и происходит деструкция костной ткани,
  • при низких концентрациях активируется перестройка кости и остеогенез.

Почки

  • увеличивается реабсорбция кальция и магния,
  • уменьшается реабсорбция фосфатов, аминокислот, карбонатов, натрия, хлоридов, сульфатов.
  • также гормон стимулирует образование кальцитриола (гидроксилирование по С 1).

Кишечник

  • при участии кальцитриола усиливается всасывание кальция и фосфатов.

Гипофункция

Возникает при случайном удалении железы при операциях на щитовидной железе или при аутоиммунной деструкции ткани желез. Возникающая гипокальциемия и гиперфосфатемия проявляется в виде высокой нервно-мышечной возбудимости, судорог, тетании. При резком снижении кальция возникает дыхательный паралич, ларингоспазм.

Гиперфункция

Первичный гиперпаратиреоз возникает при аденоме желез. Нарастающая гиперкальциемия вызывает повреждение почек, мочекаменную болезнь.

Вторичный гиперпаратиреоз является результатом почечной недостаточности, при которой происходит нарушение образования кальцитриола, снижение концентрации кальция в крови и компенсаторное возрастание синтеза паратиреоидного гормона.

Кальцитонин

Строение

Представляет собой пептид, включающий 32 аминокислоты с молекулярной массой 3,6 кДа.

Синтез

Осуществляется в парафолликулярных клетках щитовидной железы.

Регуляция синтеза и секреции

Активируют : ионы кальция, глюкагон.

Механизм действия

Аденилатциклазный

Мишени и эффекты

Эффект кальцитонина заключается в уменьшении концентрации кальция и фосфатов в крови:

  • в костной ткани подавляет активность остеокластов, что улучшает вход кальция и фосфатов в кость,
  • в почках подавляет реабсорбцию ионов Ca 2+ , фосфатов, Na + , K + , Mg 2+ .

Гормон синтезируется паращитовидными железами. Он является полипептидом (84 аминокислоты). Краткосрочная регуляция секреции паратгормона осуществляется Са++, а в течение длительного времени - 1,25(ОН)2D3 cовместно с кальцием.

Паратгормон взаимодействует с 7-ТМС-(R), что приводит к активации аденилатциклазы и повышению уровня цАМФ. Помимо этого, в механизм действия паратгормона включаются Са++, а также ИТФ и диацилглицерол (ДАГ). Основная функция паратгомона заключается в поддержании постоянного уровня и Са++. Эту функцию он выполняет, влияя на кости, почки и (посредством витамина D) кишечник. Влияние паратгормона на остеокласты ткани осуществляется в основном через ИТФ и ДАГ, что в конечном итоге стимулирует распад кости. В проксимальных канальцах почек паратгормон угнетает реабсорбцию фосфатов, что ведет к фосфатурии и гипофосфатемии, он увеличивает также реабсорбцию кальция, т. е. уменьшает его экскрецию. Кроме того, в почках паратгормон повышает активность 1-гидроксилазы. Этот фермент участвует в синтезе активных форм витамина D.

Поступление кальция в клетку регулируется нейрогормональными сигналами, одни из которых увеличивают скорость вхождения Са + в клетку из межклеточного пространства, другие - высвобождения его из внутриклеточных депо. Из внеклеточного пространства Са2+ попадает в клетку через кальциевый канал (белок, состоящий из 5 субъединиц). Кальциевый канал активируется гормонами, механизм действия которых реализуется через цАМФ. Высвобождение Са2+ из внутриклеточных депо происходит под действием гормонов, активирующих фосфолипазу С - фермент, способный гидролизовать фосфолипид плазматической мембраны ФИФФ (фосфатидилинозитол-4,5- бифосфат) на ДАГ (диацилглицерол) и ИТФ (инозитол-1,4,5-трифосфат):

ИТФ присоединяется к специфическому рецептору кальцисомы (где Са2+ аккумулируется). При этом изменяется конформация рецептора, что влечёт за собой открытие ворот, запиравших канал для прохождения Са2+ из кальцисомы. Высвободившийся из депо кальций связывается с протеинкиназой С, активность которой увеличивает ДАГ. Протеинкиназа С, в свою очередь, фосфосфорилирует различные белки и ферменты, из- меняя тем самым их активность.

Ионы кальция действуют двумя путями: 1) связывают отрицательно заряженные группы на поверхности мембран, изменяя тем самым их полярность; 2) связываются с белком калмодулином, активируя тем самым множество ключевых ферментов обмена угле- водов и липидов.

Недостаток кальция приводит к развитию остеопороза (хрупкости костей). К недостатку кальция в организме приводят дефицит его в пище и гиповитаминоз Д.

Суточная потребность - 0,8–1,0 г/сут.

В обмене кальция наряду с паратирином и тиреокальцитонином исключительно важную роль играет витамин Д.

Обмен кальция, гиперкальциемия и гипокальциемия.

К гормонам белковой природы относится также паратиреоидный гормон (паратгормон). Они

синтезируются паращитовидными железами. Молекула паратгормона быка содержит 84аминокислотных

остатка и состоит из одной полипептидной цепи. Выяснено, что паратгормон участвует в регуляции

концентрации катионов кальция и связанных с ними анионов фосфорной кислоты в крови. Биологически

активной формой считается ионизированный кальций, концентрация его колеблется в пределах 1,1–1,3 ммоль/л.

Ионы кальция оказались эссенциальными факторами, не заменимыми другими катионами для ряда жизненно

важных физиологических процессов: мышечное сокращение, нервно-мышечное возбуждение, свертывание

крови, проницаемость клеточных мембран, активность ряда ферментов и т.д. Поэтому любые изменения этих

процессов, обусловленные длительным недостатком кальция в пище или нарушением его всасывания в

кишечнике, приводят к усилению синтеза паратгормона, который способствует вымыванию солей кальция (в

виде цитратов и фосфатов) из костной ткани и соответственно к деструкции минеральных и органических

компонентов костей. Другой орган-мишень паратгормона – это почка. Паратгормон уменьшает реабсорбцию

фосфата в дистальных канальцах почки и повышает канальцевую реабсорбцию кальция.В особых клетках – так

называемых парафолликулярных клетках, или С-клетках щитовидной железы, синтезируется гормон пептидной

природы, обеспечивающий постоянную концентрацию кальция в крови - кальцитонин.

Кальцитонин содержит дисульфидный мостик (между 1-м и 7-м аминокислотными остатками) и характеризуется

N-концевым цистеином и С-концевым пролинамидом. Биологическое действие кальцитонина прямо

противоположно эффекту паратгормона: он вызывает подавление в костной ткани резорбтивных процессов и

соответственно гипокальциемию и гипофосфатемию. Таким образом, постоянство уровня кальция в крови

человека и животных обеспечивается главным образом паратгормоном, кальцитриолом и кальцитонином, т.е.

гормонами как щитовидной и паращитовидных желез, так и гормоном – производным витамина D3. Это следует

учитывать при хирургических лечебных манипуляциях на данных железах.

Анаэробный распад глюкозы. Этапы этого процесса. Гликолитическая оксиредукция, субстратное

Фосфорилирование. Энергетическая ценность анаэробного распада глюкозы. Регуляторные механизмы,

Участвующие в этом процессе.

Гликолиз – синоним молочнокислого

брожения – сложный ферментативный

процесс превращения глюкозы до двух

молекул молочной кислоты, протекающий

в тканях человека и животных без

потребления кислорода. Гликолиз

включает 11 ферментативных реакций,

протекающих в цитоплазме клетки.

Реакции гликолиза проходят в 2 стадии. В

ходе первой стадии –

энергопотребляющей – используются 2

АТФ в 1-ой и 3-ей реакциях. В процессе 7-

ой и 10-ой реакций второй стадии –

энергодающей – образуются 4 АТФ. Из 11

реакций - 3 необратимые (1-ая, 3-я и 10-

Витамин РР, структура коферментов, участие в обменных процессах. Гипо - и авитаминоз РР. Пищевые

Источники, суточная потребность.

Витамин РР (никотиновая кислота, никотинамид, витамин B3 )

Источники . Витамин РР широко распространён в растительных продуктах, высоко его

почках крупного рогатого скота и свиней. Суточная потребность в этом витамине

доставляет для взрослых 15-25 мг, для детей - 15 мг. Биологические

функции. Никотиновая кислота в организме входит в состав NAD и NADP, выполняющих функции коферментов

различных дегидрогеназ. Недостаточность витамина РР приводит к заболеванию "пеллагра", для которого

характерны 3 основных признака: дерматит, диарея, деменция ("три Д"), Пеллагра проявляется в виде

симметричного дерматита на участках кожи, доступных действию солнечных лучей, расстройств ЖКТ (диарея) и

воспалительных поражений слизистых оболочек рта и языка. В далеко зашедших случаях пеллагры наблюдают

расстройства ЦНС (деменция): потеря памяти, галлюцинации и бред.

Биосинтез жиров в организме: ресинтез жира в эндотелии кишечника, синтез жиров в печени и подкожно-

Жировой клетчатке. Транспорт жиров липопротеинами крови. Резервирование жиров. Физиологическое

Значение жиров для организма человека. Нарушение процесса синтеза жиров: ожирение, жировое

Перерождение печени.

Жировой обмен - совокупность процессов переваривания и всасывания нейтральных жиров

(триглицеридов) и продуктов их распада в желудочно-кишечном тракте, промежуточного обмена жиров и

жирных кислот и выведение жиров, а также продуктов их обмена из организма. Понятия «жировой обмен » и

«липидный обмен» часто используются как синонимы, т.к. входящие в состав тканей животных и растений

входят нейтральные жиры и жироподобные соединения, объединяются под общим

названием липиды. Нарушения Ж. о. служат причиной или являются следствием многих патологических

состояний. В организм взрослого человека с пищей ежесуточно поступает в среднем 70 г жиров животного и

растительного происхождения. В ротовой полости жиры не подвергаются никаким изменениям, т.к. слюна не

содержит расщепляющих жиры ферментов. Частичное расщепление жиров на глицерин или моно-,

диглицериды и жирные кислоты начинается в желудке. Однако оно протекает с небольшой скоростью,

поскольку в желудочном соке взрослого человека и млекопитающих активность фермента липазы,

катализирующего гидролитическое расщепление жиров, крайне невысока, а величина рН желудочного сока

далека от оптимальной для действия этого фермента (оптимальное значение рН для желудочной липазы

находится в пределах 5,5-7,5 единиц рН). Кроме того, в желудке отсутствуют условия для эмульгирования

жиров, а липаза может активно гидролизовать только жир, находящийся в форме жировой эмульсии. Поэтому у

взрослых людей жиры, составляющие основную массу пищевого жира, в желудке особых изменений не

претерпевают. Однако в целом желудочное пищеварение значительно облегчает последующее переваривание

жира в кишечнике. В желудке происходит частичное разрушение липопротеиновых комплексов мембран клеток

пищи, что делает жиры более доступными для последующего воздействия на них липазы панкреатического

сока. Кроме того, даже незначительное по объему расщепление жиров в желудке приводит к появлению

свободных жирных кислот, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и там

способствуют эмульгированию жира. Наиболее сильным эмульгирующим действием обладают желчные

кислоты, попадающие в двенадцатиперстную кишку с желчью. В двенадцатиперстную кишку вместе с пищевой

массой заносится некоторое количество желудочного сока, содержащего соляную кислоту, которая в

двенадцатиперстной кишке нейтрализуется в основном бикарбонатами, содержащимися в панкреатическом и

кишечном соке и желчи. Образующиеся при реакции бикарбонатов с соляной кислотой пузырьки углекислого

газа разрыхляют пищевую кашицу и способствуют более полному перемешиванию ее с пищеварительными

соками. Одновременно начинается эмульгирование жира. Соли желчных кислот адсорбируются в присутствии

небольших количеств свободных жирных кислот и моноглицеридов на поверхности капелек жира в виде

тончайшей пленки, препятствующей слиянию этих капелек.

Нарушения жирового обмена. Одной из причин недостаточного всасывания жиров в тонкой кишке

может быть их неполное расщепление вследствие либо пониженной секреции сока поджелудочной железы

(недостаток панкреатической липазы), либо вследствие пониженного выделения желчи (недостаток желчных

кислот, необходимых для эмульгирования жира и образования жировых мицелл). Другой, наиболее частой

причиной недостаточного всасывания жира в кишечнике является нарушение функции кишечного эпителия,

наблюдаемое при энтеритах, гиповитаминозах, гипокортицизме и некоторых других патологических состояниях.

В этом случае моноглицериды и жирные кислоты не могут нормально всасываться в кишечнике из-за

повреждения его эпителия. Нарушение всасывания жиров наблюдается также при панкреатитах, механической

желтухе, после субтотальной резекции тонкой кишки, а также ваготомии, приводящей к понижению тонуса

желчного пузыря и замедленному поступлению желчи в кишечник. Нарушение всасывания жира в тонкой кишке

приводит к появлению большого количества жира и жирных кислот в кале - стеаторее. При длительном

нарушении всасывания жира организм получает также недостаточное количество жирорастворимых витаминов.

К гормонам белковой природы относится также паратиреоидный гормон (паратгормон), точнее, группа паратгормонов, различающихся последовательностью аминокислот. Они синтезируются паращитовидными железами. Еще в 1909 г. было показано, что удаление паращитовидных желез вызывает у животных тетанические судороги на фоне резкого падения концентрации кальция в плазме крови; введение солей кальция предотвращало гибель животных. Однако только в 1925 г. из паращитовидных желез был выделен активный экстракт, вызывающий гормональный эффект – повышение содержания кальция в крови. Чистый гормон был получен в 1970 г. из паращитовидных желез крупного рогатого скота; тогда же была определена его первичная структура. Выяснено, что паратгормон синтезируется в виде предшественника (115 аминокислотных остатков) пропаратгормона, однако первичным продуктом гена оказался препропаратгормон, содержащий дополнительно сигнальную последовательность из 25 аминокислотных остатков. Молекула паратгормона быка содержит 84 аминокислотных остатка и состоит из одной полипептидной цепи.

Выяснено, что паратгормон участвует в регуляции концентрации катионов кальция и связанных с ними анионов фосфорной кислоты в крови. Как известно, концентрация кальция в сыворотке крови относится к химическим константам, суточные колебания ее не превышают 3–5% (в норме 2,2–2,6 ммоль/л). Биологически активной формой считается ионизированный кальций, концентрация его колеблется в пределах 1,1–1,3 ммоль/л. Ионы кальция оказались эссенциальными факторами, не заменимыми другими катионами для ряда жизненно важных физиологических процессов: мышечное сокращение, нервно-мышечное возбуждение, свертывание крови, проницаемость клеточных мембран, активность ряда ферментов и т.д. Поэтому любые изменения этих процессов, обусловленные длительным недостатком кальция в пище или нарушением его всасывания в кишечнике, приводят к усилению синтеза паратгормона, который способствует вымыванию солей кальция (в виде цитратов и фосфатов) из костной ткани и соответственно к деструкции минеральных и органических компонентов костей.

Другой орган-мишень паратгормона – это почка. Паратгормон уменьшает реабсорбцию фосфата в дистальных канальцах почки и повышает канальцевую реабсорбцию кальция.

Следует указать, что в регуляции концентрации Са 2+ во внеклеточной жидкости основную роль играют три гормона: паратгормон, кальцитонин, синтезируемый в щитовидной железе, и кальцитриол – производное D 3 . Все три гормона регулируют уровень Са 2+ , но механизмы их действия различны. Так, главная роль кальцитриола заключается в стимулировании всасывания Са 2+ и фосфата в кишечнике, причем против концентрационного градиента, в то время как паратгормон способствует выходу их из костной ткани в кровь, всасыванию кальция в почках и выделению фосфатов с мочой.

Конец работы -

Эта тема принадлежит разделу:

Биохимия

Федеральное агентство по образованию.. бузулукский гуманитарно технологический институт.. филиал государственного образовательного учреждения..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет биохимии
Биологическая химия- это наука, изучающая химический состав органов и тканей организмов и химические процессы и превращения, лежащие в основе их жизнедеятельности. Современная биохи

История развития биохимии
Можно выделить основные этапы развития биохимической науки. 1. “Протобиохимия”. Концепции процессов жизнедеятельности и их природы, развиваемые в древности, античности, в период средневеко

Методы изучения
Основным объектом биохимии является изучение обмена веществ и энергии. Совокупность процессов, неразрывно связанных с жизнедеятельностью, принято называть обменом веществ. Обмен вещ

Значимость биохимии как науки
Сейчас уже невозможно представить ни одну науку, которая бы не обходилась без достижений биохимии. Значение биологической химии нельзя не учитывать. Она имеет как научное, так и практическое значен

Элементарный состав белков
В настоящее время установлено, что в живой природе не существует небелковых организмов. Белки наиболее важная часть веществ, входящих в состав организма. Впервые белки были обнаруже

Аминокислотный состав белков
Аминокислоты (аминокарбоновые кислоты) - органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Аминокислоты мог

Общие химические свойства
Аминокислоты могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы -COOH, так и основные свойства, обусловленные аминогруппой -NH2

Электрофильно-нуклеофильные свойства
1) Реакция ацилирование – взаимодействие со спиртами: NаОН NH3+– CRH – COO- + СН3ОН + НС1 ͛

Внутримолекулярное дезаминирование
Ок-ль NH3+– 0CH – COO- аспартатаммиаклиаза -ООС –-1С – Н | || Н – С-2Н – СОО-

Биологические функции белков
Функции белков чрезвычайно многообразны. Каждый данный белок как вещество с определенным химическим строением выполняет одну узкоспециализированную функцию и лишь в нескольких отдельных случаях – н

Структуры белка
Получены доказательства предположения К. Линдерстрёма-Ланга о существовании 4 уровней структурной организации белковой молекулы: первичной, вторичной, третичной и четвертичной струк

Определение С-концевой аминокислоты боргидридом натрия
Видно, что в указанных условиях только одна, а именно С-концевая, аминокислота будет превращаться в α-аминоспирт, легко идентифицируемый методом хроматографии. Таким образом, при помощи указан

Физико-химические свойства белков
Наиболее характерными физико-химическими свойствами белков являются высокая вязкость растворов, незначительная диффузия, способность к набуханию в больших пределах, оптическая актив

Химия нуклеиновых кислот
В наше время трудно назвать область естествознания, которую не интересовала бы проблема структуры и функций нуклеиновых кислот. Несмотря на огромный прогресс, достигнутый в последние десятилетия пр

Методы выделения нуклеиновых кислот
При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов. Нуклеиновые кислоты являются составной частью сложных

Химический состав нуклеиновых кислот
Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, п

Структура нуклеиновых кислот
Для понимания ряда особенностей структуры ДНК особое значение имели закономерности состава и количественного содержания азотистых оснований, установленные впервые Э. Чаргаффом. Оказалось, что азоти

Первичная структура нуклеиновых кислот
Под первичной структурой нуклеиновых кислот понимают порядок, последовательность расположения мононуклеотидов в полинуклеотидной цепи ДНК и РНК. Такая цепь стабилизируется 3",5"-фос

Вторичная структура нуклеиновых кислот
В соответствии с моделью Дж. Уотсона и Ф. Крика, предложенной в 1953г. на основании ряда аналитических данных, а также рентгеноструктурного анализа молекула ДНК состоит из двух цепей, образуя право

Третичная структура нуклеиновых кислот
Выделить нативную молекулу ДНК из большинства источников, в частности хромосом, чрезвычайно трудно из-за высокой чувствительности молекулы ДНК к нуклеазам тканей и гидродинамической деструкции.

Транспортные РНК
На долю тРНК приходится около 10–15% от общего количества клеточной РНК. К настоящему времени открыто более 60 различных тРНК. Для каждой аминокислоты в клетке имеется, по крайней мере, одна специф

Матричная РНК
В ряде лабораторий (в частности, в лаборатории С. Бреннера) были получены данные о возможности существования в клетках в соединении с рибосомами короткоживущей РНК, названной информ

Характеристика ферментов, их свойств
В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т.е. в мягких условиях. Вещества, которые окисляются в клетках

Отличительные признаки ферментативного и химического катализа
В принципе клетка использует те же самые химические реакции, что и химик в своей лаборатории. Однако на условия протекания реакций в клетке накладываются жесткие ограничения. В лаборатории для уско

Пространственное строение
Причиной всех этих уникальных свойств ферментов является их пространственное строение. Все ферменты представляют собой глобулярные белки, намного превосходящие по размерам субстрат. Именно это обст

Функции коферментов и простетических групп
5.4.1 Коферменты и витамины. Коферменты – это органические вещества, предшественниками которых являются витамины. Некоторые из них непрочно связаны с белком (НАД, НSКоА, и др). есть фермент

Механизм действия ферментов
Структура и функции ферментов, а также механизм их действия почти ежегодно подробно обсуждаются на многих международных симпозиумах и конгрессах. Важное место отводится рассмотрению структуры всей

Уравнения Михаэлиса-Ментен и Лайнуивера-Бэрка
Одним из характерных проявлений жизни является удивительная способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия.

Факторы, определяющие активность ферментов. Зависимость скорости реакции от времени
В этом разделе кратко рассмотрены общие факторы, в частности зависимость скорости ферментативной реакции от времени, влияние концентраций субстрата и фермента на скорость реакций, катализируемых фе

Влияние концентраций субстрата и фермента на скорость ферментативной реакции
Из приведенного ранее материала вытекает важное заключение: одним из наиболее существенных факторов, определяющих скорость ферментативной реакции, является концентрация субстрата (и

Активирование и ингибирование ферментов
Скорость ферментативной реакции, как и активность фермента, в значительной степени определяется также присутствием в среде активаторов и ингибиторов: первые повышают скорость реакции, а вторые торм

Молекулярный механизм действия металлов в энзиматическом катализе, или роль металлов в активировании ферментами
В ряде случаев ионы металлов (Со2+, Mg2+, Zn2+, Fe2+) выполняют функции простетических групп ферментов, или служат акцепторами и дон

Применение ферментов
Обладая высокой степенью избирательности, ферменты используются живыми организмами для осуществления с высокой скоростью огромного разнообразия химических реакций; они сохраняют сво

Химия липидов
Липиды представляют собой обширную группу соединений, существенно различающихся по своей химической структуре и функциям. Поэтому трудно дать единое определение, которое подошло бы для всех соедине

Жирные кислоты
Жирные кислоты – алифатические карбоновые кислоты – в организме могут находиться в свободном состоянии (следовые количества в клетках и тканях) либо выполнять роль строительных блоков для большинст

Глицериды (ацилглицеролы)
Глицериды(ацилглицерины, или ацилглицеролы) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Если жирными кислотами этерифицир

Фосфолипиды
Фосфолипидыпредставляют собой сложные эфиры многоатомных спиртов глицерина или сфингозина с высшими жирными кислотами и фосфорной кислотой. В состав фосфолипидов входят также азотс

Сфинголипиды (сфингофосфолипиды)
Сфингомиелины.Это наиболее распространенные сфинголипиды. В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Сф

Стероиды
Все рассмотренные липиды принято называть омыляемыми, поскольку при их щелочном гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кис

Химия углеводов
Впервые термин «углеводы» был предложен профессором Дерптского (ныне Тартуского) университета К.Г. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу C

Биологическая роль углеводов
Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энер

Моносахариды
Моносахариды можно рассматривать как производные многоатомных спиртов, содержащие карбонильную (альдегидную или кетонную) группу. Если карбонильная группа находится в конце цепи, то

Основные реакции моносахаридов, продукты реакций и их свойства
Реакции полуацетального гидроксила.Уже отмечалось, что моносахариды как в кристаллическом состоянии, так и в растворе в основном существуют в полуацетальных формах.

Олигосахариды
Олигосахариды– углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды,

Полисахариды
Полисахариды – высокомолекулярные продукты поликонденсации моносахаридов, связанных друг с другом гликозидными связями и образующих линейные или разветвленные цепи. Наиболее часто встречающимся мон

Гетерополисахариды
Полисахариды, в структуре которых характерно наличие двух или более типов мономерных звеньев, носят название гетерополисахаридов. Принято считать, что, поскольку гетерополи

Витамины группы А
Витамин А (ретинол; антиксерофтальмический витамин) хорошо изучен. Известны три витамина группы А: А1, А2 и цис-форма витамина А1, названная

Витамины группы D
Витамин D (кальциферол; антирахитический витамин) существует в виде нескольких соединений, различающихся как по химическому строению, так и по биологической активности. Для человека

Витамины группы К
К витаминам группы К, согласно номенклатуре биологической химии, относятся 2 типа хинонов с боковыми цепями, представленными изопреноидными звеньями (цепями): витамины К1

Витамины группы Е
В начале 20-х годов Г. Эванс показал, что в смешанной пище содержится вещество, которое абсолютно необходимо для нормального размножения животных. Так, у крыс, содержащихся на синте

Витамины, растворимые в воде
Условно можно считать, что отличительной особенностью витаминов, растворимых в воде, является участие большинства из них в построении молекул коферментов (см. табл. 12), представляющих собой низком

Витамин РР
Витамин РР (никотиновая кислота, никотинамид, ниацин) получил также название антипеллагрического витамина (от итал. preventive pellagra – предотвращающий пеллагру), поскольку его от

Биотин (витамин Н)
В 1916 г. в опытах на животных было показано токсичное действие сырого яичного белка; употребление печени или дрожжей снимало этот эффект. Фактор, предотвращающий развитие токсикоза

Фолиевая кислота
Фолиевая (птероилглутаминовая) кислота (фолацин) в зависимости от вида животных или штамма бактерий, нуждающихся для нормального роста в присутствии этого пищевого фактора, называла

Витамин С
Витамин С (аскорбиновая кислота; антискорбутный витамин) получил название антискорбутного, антицинготного фактора, предохраняющего от развития цинги – болезни, принимавшей в средние

Витамин Р
Витамин Р (рутин, цитрин; витамин проницаемости) выделен в 1936 г. А. Сент-Дьердьи из кожуры лимона. Под термином «витамин Р», повышающим резистентность капилляров (от лат. permeabi

Общее понятие о гормонах
Учение о гормонах выделено в самостоятельную науку – эндокринологию. Современная эндокринология изучает химическую структуру гормонов, образующихся в железах внутренней секреции, з

Гормоны гипоталамуса
Гипоталамус служит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. Природа связей, существующих между ЦНС и эндокринной системой, стала проясняться в последние дес

Гормоны гипофиза
В гипофизе синтезируется ряд биологически активных гормонов белковой и пептидной природы, оказывающих стимулирующий эффект на различные физиологические и биохимические процессы в тканях-мишенях (та

Вазопрессин и окситоцин
Гормоны вазопрессин и окситоцин синтезируются рибосомальным путем. Химическое строение обоих гормонов было расшифровано классическими работами В. дю Виньо и сотр., впервые выделивши

Меланоцитстимулирующие гормоны (МСГ, меланотропины)
Меланотропины синтезируются и секретируются в кровь промежуточной долей гипофиза. Выделены и расшифрованы первичные структуры двух типов гормонов – α- и β-меланоцитстимули

Адренокортикотропный гормон (АКТГ, кортикотропин)
Еще в 1926 г. было установлено, что гипофиз оказывает стимулирующее влияние на надпочечники, повышая секрецию гормонов коркового вещества. АКТГ, помимо основного действия – стимуляц

Соматотропный гормон (СТГ, гормон роста, соматотропин)
Гормон роста был открыт в экстрактах передней доли гипофиза еще в 1921 г., однако в химически чистом виде получен только в 1956–1957 гг. СТГ синтезируется в ацидофильных клетках пер

Лактотропный гормон (пролактин, лютеотропный гормон)
Пролактин считается одним из наиболее «древних» гормонов гипофиза, поскольку его удается обнаружить в гипофизе низших наземных животных, у которых отсутствуют молочные железы, а так

Тиреотропный гормон (ТТГ, тиротропин)
В отличие от рассмотренных пептидных гормонов гипофиза, представленных в основном одной полипептидной цепью, тиротропин является сложным гликопротеином и содержит, кроме того, по дв

Гонадотропные гормоны (гонадотропины)
К гонадотропинам относятся фолликулостимулирующий гормон (ФСГ, фоллитропин) и лютеинизирующий гормон (ЛГ, лютропин), или гормон, стимулирующий интерстициальные клетки. Оба гормона с

Липотропные гормоны (ЛТГ, липотропины)
Среди гормонов передней доли гипофиза, структура и функция которых выяснены в последнее десятилетие, следует отметить липотропины, в частности β- и γ-ЛТГ. Наиболее подробн

Гормоны щитовидной железы
Щитовидная железа играет исключительно важную роль в обмене веществ. Об этом свидетельствуют резкое изменение основного обмена, наблюдаемое при нарушениях деятельности щитовидной железы, а также ря

Гормоны поджелудочной железы
Поджелудочная железа относится к железам со смешанной секрецией. Внешнесекреторная функция ее заключается в синтезе ряда ключевых ферментов пищеварения, в частности амилазы, липазы, трипсина, химо-

Гормоны надпочечников
Надпочечники состоят из двух индивидуальных в морфологическом и функциональном отношениях частей – мозгового и коркового вещества. Мозговое вещество относится к хромаффинной, или адреналовой, систе

Половые гормоны
Половые гормоны синтезируются в основном в половых железах женщин (яичники) и мужчин (семенники); некоторое количество половых гормонов образуется, кроме того, в плаценте и корковом веществе надпоч

Молекулярные механизмы передачи гормонального сигнала
Несмотря на огромное разнообразие гормонов и гормоноподобных веществ, в основе биологического действия большинства гормонов лежат удивительно сходные, почти одинаковые фундаментальн

Понятие метаболизма
Жизнедеятельность организма обеспечивается тесной связью с внешней средой, которая поставляет кислород и питательные вещества и постоянным превращением этих веществ в клетках организма. Продукты ра

Биологическое окисление
При биологическом окислении от органической молекулы под действием соответствующего фермента отщепляются два атома водорода. В ряде случаев при этом между ферментами и окисленной мо

Переваривание и всасывание
Переваривание углеводов начинается уже в ротовой полости под воздействием слюны, содержащей ферменты амилазу и мальтазу, которые обеспечивают распад углеводов до глюкозы. В полости желудка

Непрямой прямой
глюкоза (6 атомов углерода) ↓ глюкозо–6- фосфат (6 атомов углерода)

Анаэробный распад
Анаэробный распад начинается с распада глюкозы – гликолиз или с распада гликогена – гликогенолиз. Этот путь распада происходит в основном в мышцах. Сущность этого проц

Изомеризация 3-фосфоглицерата
фосфоизомераза 2 О = С – СН – СН2ОФ2О = С – СН – СН2ОН | | | | О- ОН О- ОФ

Аэробный распад
Пируват, образующийся при анаэробном пути распада углеводов, под действием пируватдегидрогеназы (НАД+ и кофермент НSКоА) декарбрксилируется с образованием ацетил коэнзима А. &nb

Строение и синтез гликогена
Гликоген представляет собой разветвленный полисахарид, мономером которого является глюкоза. Остатки глюкозы соединены в линейных участках 1-4 гликозидными связями, а в местах развет

Регуляция синтеза и его нарушения
Распад гликогена происходит в основном в период между приемами пищи и ускоряется во время физической работы. Этот процесс происходит путем последовательного отщепления остатков глюкозы в виде глюко

Глюконеогенез
Глюконеогенез – это процесс синтеза глюкозы из веществ неуглеводной природы. Главными субстратами глюконеогенеза являются пируват, лактат, глицерин, аминокислоты. Важнейшей функцией глюконеогенеза

Обмен липидов
Липиды – это разнообразная по строению группа органических веществ, у которых общее свойство – гидрофобность. Жиры – триглицериды – являются самой компактной и энергоемкой формой хранения энергии.

Превращение триглицеридов и окисление глицерина
Переваривание жиров – это гидролиз жиров под действием фермента панкреатической липазы. Поступивший в клетки нейтральный жир под действием тканевых липаз гидролизуется на глицерин и жирные

Окисление жирных кислот
Жирными кислотами называют как предельные, так и непредельные высшие карбоновые кислоты, углеводородняая цепь которых содержит более 12 углеродных атомов. В организме окисление жирных кислот – чрез

Биосинтез жирных кислот
Наряду с распадом жирных кислот в организме идет и их образование. Биосинтез жирных кислот – процесс многостадийный, циклический. І стадия. 1) Конденсация СО2.

Превращения глицерофосфатидов
В клетках под действием специфических ферментов фосфолипаз глицерофосфатиды гидролизуются на составные компоненты: Глицерофосфатиды гидролизуются фосфолипазами на глицерин, жирные кислоты

Значение белков в организме
Белки – это ферменты, гормоны и др. синтез которых из неорганических веществ возможен лишь в организме растений. В животных организмах белок синтезируется из аминокислот, часть которых образуется в

Переваривание и всасывание белка
В полости рта белки не расщепляются, так как отсутствуют протеолитические ферменты. В желудке белки расщепляются под действием желудочного сока, которого в сутки выделяется 2,5 л. В

Биосинтез белка
Биосинтез белка имеет важнейшее научное и клиническое значение. Отличие одного индивидуального белка от другого определяется природой и последовательностью чередования аминокислот, входящих в его с

Дезаминирование аминокислот
Дезаминирование – расщепление аминокислот под действием дезаминаз (оксидаз) с выделением азота в виде аммиака. 1. Прямое дезаминирование характерно для α-аминокислот (

Переаминирование (трансаминирование) аминокислот
Трансаминирование – реакция переноса аминогруппы с аминокислоты на α-кетокислоту. Не подвергаются прераминированию только Лиз иТре. R R" R R"

Декарбоксилирование аминокислот
Декарбоксилирование протекает под действием декарбоксилаз с отщеплением от аминокислоты углекислого газа и образованием аминов.

Обмен сложных белков
16.1 Обмен нуклеопротеидов Нуклеопротеиды и их производные выполняют в организме многообразные функции, участвуя: - в синтезе нуклеиновых кислот

Обмен гемоглобина
Из различных хромопротеинов наибольшее значение имеет гемоглобин. Поступающий с пищей гемоглобин в желудочно-кишечном тракте распадается на составные части – глобин и гем. Глобин как белок, гидроли

Конечные продукты распада аминокислот
В организме человека подвергается распаду около 70 г аминокислот в сутки, при этом в результате реакций дезаминирования и окисления биогенных аминов освобождается большое количество

Синтез мочевины, орнитиновый цикл
Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины. Последняя выводится с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного, обм

Обмен отдельных аминокислот
Главная часть аминокислот идет на синтез белка, остальная часть подвергается превращениям и принимает участие в образовании многих веществ, имеющих большое значение для организма. Углеродн

Взаимосвязь обмена белков, жиров и углеводов. Обмен воды и минеральных солей
Живой организм и его функционирование находятся в постоянной зависимости от окружающей среды. Интенсивность обмена с внешней средой и скорость внутриклеточных процессов обмена вещес

Взаимосвязь обмена углеводов и жиров
Конечными продуктами обмена веществ являются СО2, Н2О и мочевина. Углекислый газ, образующийся при декарбоксилировании углеводов, жиров, белков, нуклеиновых кислот поступает в

Взаимосвязь обмена углеводов и белков
При распаде белков образуются аминокислоты, большая часть которых называется гликогенными и служит источником веществ, необходимых для синтеза углеводов. Вначале аминокислоты подвергаются

Взаимосвязь обмена белков и жиров
О взаимосвязи этого вида обмена веществ известно мало. Возможно, что превращения аминокислот в жирные кислоты происходит через образование вначале углеводов, хотя некоторые аминокислоты называемые

Понятие о гомеостазе
Организм – термодинамическая открытая система, поэтому это позволяет ему сохранять устойчивость, уровень работоспособности, а также относительное постоянство внутренней среды, которое называется го

Водный обмен и его регуляция
Вода – составная часть организма. Все реакции обмена веществ протекают в водной среде, в которой существуют клетки, и связь между ними поддерживаются через жидкость. Основная часть биологической жи

Минеральный обмен
Минеральные вещества – это незаменимые вещества для организма, хотя и не обладают питательной ценностью и не являются источником энергии. Их значение определяется тем, что они входят в состав всех


Паратгормон

Паратгормон (ПТГ) - одноцепочечный полипептид, состоящий из 84 аминокислотных остатков (около 9,5 кД), действие которого направлено на повышение концентрации ионов кальция и снижение концентрации фосфатов в плазме крови.

1. Синтез и секреция ПТГ

ПТГ синтезируется в паращитовидных железах в виде предшественника - препрогормона, содержащего 115 аминокислотных остатков. Во время переноса в ЭР от препрогормона отщепляется сигнальный пептид, содержащий 25 аминокислотных остатков. Образующийся прогормон транспортируется в аппарат Гольджи, где происходит превращение предшественника в зрелый гормон, включающий 84 аминокислотных остатка (ПТГ 1-84). Паратгормон упаковывается и хранится в секреторных гранулах (везикулах). Интактный паратгормон может расщепляться на короткие пептиды: N-концевые, С-концевые и срединные фрагменты. N-концевые пептиды, содержащие 34 аминокислотных остатка, обладают полной биологической активностью и секретируются железами наряду со зрелым паратгормоном. Именно N-концевой пептид отвечает за связывание с рецепторами на клетках-мишенях. Роль С-концевого фрагмента точно не установлена. Скорость распада гормона уменьшается при низкой концентрации ионов кальция и увеличивается, если концентрация ионов кальция высока.

Секреция ПТГ регулируется уровнем ионов кальция в плазме: гормон секретируется в ответ на снижение концентрации кальция в крови.

2. Роль паратгормона в регуляции обмена кальция и фосфатов

Органы-мишени для ПТГ - кости и почки. В клетках почек и костной ткани локализованы специфические рецепторы, которые взаимодействуют с паратгормоном, в результате чего инициируется каскад событий, приводящий к активации аденилатциклазы. Внутри клетки возрастает концентрация молекул цАМФ, действие которых стимулирует мобилизацию ионов кальция из внутриклеточных запасов. Ионы кальция активируют киназы, которые фосфорилируют особые белки, индуцирующие транскрипцию специфических генов.

В костной ткани рецепторы ПТГ локализованы на остеобластах и остеоцитах, но не обнаружены на остеокластах. При связывании паратгормона с рецепторами клеток-мишеней остеобласты начинают усиленно секретировать инсулиноподобный фактор роста 1 и цитокины. Эти вещества стимулируют метаболическую активность остеокластов. В частности, ускоряется образование ферментов, таких как щелочная фосфатаза и коллагеназа, которые воздействуют на компоненты костного матрикса, вызывают его распад, в результате чего происходит мобилизация Са 2+ и фосфатов из кости во внеклеточную жидкость (рис. 1).

В почках ПТГ стимулирует реабсорбцию кальция в дистальных извитых канальцах и тем самым снижает экскрецию кальция с мочой, уменьшает реабсорбцию фосфатов.

Кроме того, паратгормон индуцирует синтез кальцитриола (1,25(OH) 2 D 3), который усиливает всасывание кальция в кишечнике.

Таким образом, паратгормон восстанавливает нормальный уровень ионов кальция во внеклеточной жидкости как путём прямого воздействия на кости и почки, так и действуя опосредованно (через стимуляцию синтеза кальцитриола) на слизистую оболочку кишечника, увеличивая в этом случае эффективность всасывания Са 2+ в кишечнике. Снижая реабсорбцию фосфатов из почек, паратгормон способствует уменьшению концентрации фосфатов во внеклеточной жидкости.

3. Гиперпаратиреоз

При первичном гиперпаратиреозе нарушается механизм подавления секреции паратгормона в ответ на гиперкальциемию. Это заболевание встречается с частотой 1:1000. Причинами могут быть опухоль околощитовидной железы (80%) или диффузная гиперплазия желёз, в некоторых случаях рак паращитовидной железы (менее 2%). Избыточная секреция паратгормона приводит к повышению мобилизации кальция и фосфатов из костной ткани, усилению реабсорбции кальция и выведению фосфатов в почках. Вследствие этого возникает гиперкальциемия, которая может приводить к снижению нервно-мышечной возбудимости и мышечной гипотонии. У больных появляются общая и мышечная слабость, быстрая утомляемость и боли в отдельных группах мышц, увеличивается риск переломов позвоночника, бедренных костей и костей предплечья. Увеличение концентрации фосфата и ионов кальция в почечных канальцах может служить причиной образования в почках камней и приводит к гиперфосфатурии и гипофосфатемии.

Вторичный гиперпаратиреоз встречается при хронической почечной недостаточности и дефиците витамина D 3 и сопровождается гипокальциемией, связанной в основном с нарушением всасывания кальция в кишечнике из-за угнетения образования кальцитриола поражёнными почками. В этом случае секреция паратгормона увеличивается. Однако повышенный уровень паратгормона не может нормализовать концентрацию ионов кальция в плазме крови вследствие нарушения синтеза кальцитриола и снижения всасывания кальция в кишечнике. Наряду с гипокальциемией, нередко наблюдают гиперфостатемию. У больных развивается повреждение скелета (остеопороз) вследствие повышения мобилизации кальция из костной ткани. В некоторых случаях (при развитии аденомы или гиперплазии околощитовидных желёз) автономная гиперсекреция паратгормона компенсирует гипокальциемию и приводит к гипер-кальциемии (третичный гиперпаратиреоз ).

4. Гипопаратиреоз

Основной симптом гипопаратиреоза, обусловленный недостаточностью паращитовидных желёз, - гипокальциемия. Понижение концентрации ионов кальция в крови может вызвать неврологические, офтальмологические нарушения и нарушения ССС, а также поражения соединительной ткани. У больного гипопарати-реозом отмечают повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм.

Кальцитриол

Как и другие стероидные гормоны, кальцитриол синтезируется из холестерола.

Рис. 1. Биологическое действие паратгормона. 1 - стимулирует мобилизацию кальция из кости; 2 - стимулирует реабсорбцию ионов кальция в дистальных канальцах почек; 3 - активирует образование кальцитриола, 1,25(OH) 2 D 3 в почках, что приводит к стимуляции всасывания Са 2+ в кишечнике; 4 - повышает концентрацию кальция в межклеточной жидкости, тормозит секрецию ПТГ. МКЖ - межклеточная жидкость.

Действие гормона направлено на повышение концентрации кальция в плазме крови.

1. Строение и синтез кальцитриола

В коже 7-дегидрохолестерол (провитамин D 3) превращается в непосредственного предшественника кальцитриола - холекальциферол (витамин D 3). В ходе этой неферментативной реакции под влиянием УФ-излучения связь между девятым и десятым атомами углерода в молекуле холестерола разрывается, раскрывается кольцо В, и образуется холекальциферол (рис. 2). Так образуется в организме человека большая часть витамина D 3 , однако небольшое его количество поступает с пищей и всасывается в тонком кишечнике вместе с другими жирорастворимыми витаминами.

Рис. 2. Схема синтеза кальцитриола. 1 - холестерол является предшественником кальцитриола; 2 - в коже 7-дегидрохолестерол неферментативно превращается в холекальциферол; 3 - в печени 25-гидроксилаза превращает холекальциферол в кальцидиол; 4 - в почках образование кальцитриола катализируется 1α-гидроксилазой.

В эпидермисе холекальциферол связывается со специфическим витамин D-связывающим белком (транскальциферином), поступает в кровь и переносится в печень, где происходит гидроксилирование по 25-му атому углерода с образованием кальцидиола . В комплексе с витамин D-связывающим белком кальцидиол транспортируется в почки и гидроксилируется по первому углеродному атому с образованием кальцитриола . Именно 1,25(OH) 2 D 3 представляет собой активную форму витамина D 3 .

Гидроксилирование, протекающее в почках, является скорость-лимитирующей стадией. Эта реакция катализируется митохондриальным ферментом lα-гидроксилазой. Паратгормон индуцирует la-гидроксилазу, тем самым стимулируя синтез 1,25(OH) 2 D 3 . Низкая концентрация фосфатов и ионов Са2+ в крови также ускоряет синтез кальцитриола, причём ионы кальция действуют опосредованно через парат-гормон.

При гиперкальциемии активность 1α-гидроксилазы снижается, но повышается активность 24α-гидроксилазы. В этом случае увеличивается продукция метаболита 24,25(OH) 2 D 3 , который, возможно, и обладает биологической активностью, но роль его окончательно не выяснена.

2. Механизм действия кальцитриола

Кальцитриол оказывает воздействие на тонкий кишечник, почки и кости. Подобно другим стероидным гормонам, кальцитриол связывается с внутриклеточным рецептором клетки-мишени. Образуется комплекс гормон-рецептор, который взаимодействует с хроматином и индуцирует транскрипцию структурных генов, в результате чего синтезируются белки, опосредующие действие кальцитриола. Так, например, в клетках кишечника кальцитриол индуцирует синтез Са 2+ -переносящих белков, которые обеспечивают всасывание ионов кальция и фосфатов из полости кишечника в эпителиальную клетку кишечника и далее транспорт из клетки в кровь, благодаря чему концентрация ионов кальция во внеклеточной жидкости поддерживается на уровне, необходимом для минерализации органического матрикса костной ткани. В почках кальцитриол стимулирует реабсорбцию ионов кальция и фосфатов. При недостатке кальцитриола нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в органическом матриксе костной ткани, что приводит к развитию рахита и остеомаляции. Обнаружено также, что при низкой концентрации ионов кальция кальцитриол способствует мобилизации кальция из костной ткани.

3. Рахит

Рахит - заболевание детского возраста, связанное с недостаточной минерализацией костной ткани. Нарушение минерализации кости - следствие дефицита кальция. Рахит может быть обусловлен следующими причинами: недостатком витамина D 3 в пищевом рационе, нарушением всасывания витамина D 3 в тонком кишечнике, снижением синтеза предшественников кальцитриГола из-за недостаточного времени пребывания на солнце, дефектом 1α-гидроксилазы, дефектом рецепторов кальцитриола в клетках-мишенях. Всё это вызывает снижение всасывания кальция в кишечнике и снижение его концентрации в крови, стимуляцию секреции паратгормона и вследствие этого мобилизацию ионов кальция из кости. При рахите поражаются кости черепа; грудная клетка вместе с грудиной выступает вперёд; деформируются трубчатые кости и суставы рук и ног; увеличивается и выпячивается живот; задерживается моторное развитие. Основные способы предупреждения рахита - правильное питание и достаточная инсоляция.

Роль кальцитонина в регуляции обмена кальция

Кальцитонин - полипептид, состоящий из 32 аминокислотных остатков с одной дисульфидной связью. Гормон секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз в виде высокомолекулярного белка-предшественника. Секреция кальцитонина возрастает при увеличении концентрации Са 2+ и уменьшается при понижении концентрации Са 2+ в крови. Кальцитонин - антагонист паратгормона. Он ингибирует высвобождение Са 2+ из кости, снижая активность остеокластов. Кроме того, кальцитонин подавляет канальцевую реабсорбцию ионов кальция в почках, тем самым стимулируя их экскрецию почками с мочой. Скорость секреции кальцитонина у женщин сильно зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается. Это вызывает ускорение мобилизации кальция из костной ткани, что приводит к развитию остеопороза.