История развития антибиотиков. История открытия антибиотиков и их роль в современной фармакологии


Много веков назад было замечено, что зеленая плесень помогает в лечении тяжелых гнойных ран. Но в те далекие времена не знали ни о микробах, ни об антибиотиках. Первое научное описание лечебного действия зеленой плесени сделали в 70-х годах 19 века русские ученые В.А.Манассеин и А.Г. Полотебнов. После этого на несколько десятилетий о зеленой плесени забыли, и только в 1929 году она стала настоящей сенсацией, перевернувшей научный мир. Феноменальные качества этого неприятного живого организма изучил профессор микробиологии Лондонского университета Александр Флеминг.

Опыты Флеминга показали, что зеленая плесень вырабатывает особое вещество, обладающее антибактериальными свойствами и подавляющее рост многих болезнетворных микроорганизмов. Это вещество ученый назвал пенициллином, по научному названию вырабатывающих его плесневых грибов. В ходе дальнейших исследований Флеминг выяснил, что пенициллин губительно действует на микробы, но вместе с тем не оказывает отрицательного действия на лейкоциты, принимающие активное участие в борьбе с инфекцией, и другие клетки организма. Но Флемингу не удалось выделить чистую культуру пенициллина для производства лекарственных препаратов.

Учение об антибиотиках - молодая синтетическая ветвь современного естествознания. Впервые в 1940 году был получен в кристаллическом виде химиотерапевтический препарат микробного происхождения – пенициллин - антибиотик, открывший летоисчисление эры антибиотиков.

Многие учёные мечтали о создании таких препаратов, которые можно было бы использовать при лечении различных заболеваний человека, о препаратах, способных убивать патогенных бактерий, не оказывая вредного действия на организм больного.

Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат - сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения – сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

Он долгое время пребывал в гордом одиночестве, если не считать используемого индейцами Южной и Центральной Америки для лечения малярии хинина - алкалоида хинного дерева. Только спустя четверть века были открыты сульфаниламидные препараты, а в 1940 году Александр Флеминг выделил в чистом виде пенициллин.

В 1937 году в нашей стране был синтезирован сульфидин – соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

Луи Пастер и С. Джеберт в 1877 году сообщили, что аэробные бактерии подавляют рост Bacillus anthracis.

В конце XIX века В. А. Манассеин (1841-1901) и А. Г. Полотебнов (1838-1908) показали, что грибы из рода Penicillium способны задерживать в условиях in vivo развитие возбудителей ряда кожных заболеваний человека.

И. И. Мечников (1845 - 1916) ещё в 1894 году обратил внимание на возможность использования некоторых сапрофитных бактерий в борьбе с патогенными микроорганизмами.

В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение - микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

В 1929 году А. Флемингом был открыт новый препарат пенициллин , который только в 1940 году удалось выделить в кристаллическом виде.

Открытие Флеминга

В 1922 году после неудачных попыток выделить возбудителя простудных заболеваний Флеминг чисто случайно открыл лизоцим (название придумал профессор Райт) - фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он был достаточно эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие побудило Флеминга заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.

Следующая счастливая случайность - открытие Флемингом пенициллина в 1928 году - явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2-3 недели, пока его лабораторный стол не оказывался загроможденным 40-50 чашками. Тогда он принимался за уборку, просматривал культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон», на котором разрослась плесень, приобрел выраженную способность подавлять рост микроорганизмов, а также имел бактерицидные и бактериологические свойства.

Неряшливость Флеминга и сделанное им наблюдение явились двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а последовавшее затем потепление - для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.

Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция..., оказывающая выраженное действие на пиогенные кокки и палочки дифтерийной группы. .. Пенициллин даже в огромных дозах не токсичен для животных... Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг не сделал тем не менее столь очевидного следующего шага, который 12 лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены от летальной инфекции мыши, если лечить их инъекциями пенициллинового бульона. Флеминг назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми. Раствор оказался нестабильным и с трудом поддавался очистке, если речь шла о больших его количествах.

Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице Св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было техническое достижение, и ученый широко пользовался им, еженедельно отдавая распоряжения изготовлять большие партии бульона. Он делился образцами культуры пенициллина с коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из 27 статей и лекций, опубликованных им в 1930-1940 годы, даже если речь шла о веществах, вызывав ющих гибель бактерий.

Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин). В последующем число антибиотиков быстро росло и к настоящему времени их описано почти 7000 (образуемых лишь микроорганизмами); при этом только около 160 используется в медицинской практике. С получением пенициллина как препарата (1940 год) возникло новое направление в науке – учение об антибиотиках, которое необычайно быстро развивается в последние десятилетия.

В 70-х годах ежегодно описывалось более 300 новых антибиотиков. В 1937 году Вельш описал первый антибиотик стрептомицетного происхождения актимицетин, в 1939 году Красильниковым и Кореняко был получен мицетин и Дюбо – тиротрицин. Впоследующем число антибиотиков росло очень быстрыми темпами.

Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». В Нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привел к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира. Лишь немногие из них обладают такими свойствами».

В оставшиеся 10 лет жизни ученый был удостоен 25 почетных степеней, 26 медалей, 18 премий, 30 наград и почетного членства в 89 академиях наук и научных обществах.

Побочные действия

Однако антибиотики - это не только панацея от микробов, но и сильные яды. Ведя на уровне микромира между собой смертоносные войны, с их помощью одни микроорганизмы безжалостно расправляются с другими. Человек подметил это свойство антибиотиков и использовал его в своих целях - начал расправляться с микробами их же собственным оружием, создал на основе природных сотни еще более мощных синтетических препаратов. И все же предначертанное антибиотикам самой природой свойство убивать по-прежнему неотъемлемо от них.

Все антибиотики, без исключений, обладают побочными действиями! Это следует уже из самого названия таких веществ. Естественное природное свойство всех антибиотиков убивать микробы и микроорганизмы, к сожалению, невозможно направить на уничтожение только одного вида бактерий или микробов. Уничтожая вредные бактерии и микроорганизмы, любой антибиотик неминуемо оказывает такое же угнетающее воздействие и на все схожие с "врагом" полезные микроорганизмы, которые, как известно, принимают активное участие практически во всех процессах происходящих в нашем организме.



История открытия антибиотиков

Открытие антибиотиков, без преувеличения, можно назвать одним из величайших достижений медицины прошлого века. Первооткрывателем антибиотиков является английский ученый Флеминг, который в 1929 году описал бактерицидное действие колоний грибка Пенициллина на колонии бактерий, разраставшихся по соседству с грибком. Как и многие другие великие открытия в медицине, открытие антибиотиков было сделано случайно. Оказывается, ученый Флеминг не очень любил чистоту, и потому нередко пробирки на полках в его лаборатории зарастали плесенью. Однажды после недолгого отсутствия Флеминг заметил, что разросшаяся колония плесневого грибка пенициллина полностью подавила рост соседней колонии бактерий (обе колонии росли в одной пробирке). Здесь нужно отдать должное гениальности великого ученого сумевшего заметить этот замечательный факт, который послужил основой предположения того, что грибы победили бактерий при помощи специального вещества безвредного для них самих и смертоносного для бактерий. Это вещество и есть природный антибиотик - химическое оружие микромира. Действительно, выработка антибиотиков является одним из наиболее совершенных методов соперничества между микроорганизмами в природе. В чистом виде вещество, о существовании, которого догадался Флеминг, было получено во время второй мировой войны. Это вещество получило название пенициллин (от названия вида грибка, из колоний которого был получен этот антибиотик). Во время войны это чудесное лекарство спасло тысячи больных обреченных на смерть от гнойных осложнений. Но это было лишь начало эры антибиотиков. После войны исследования в этой области продолжились, и последователи Флеминга открыли множество веществ со свойствами пенициллина. Оказалось, что кроме грибков вещества и подобными свойствами вырабатываются и некоторыми бактериями, растениями, животными. Параллельные исследования в области микробиологии, биохимии и фармакологии, наконец, привели к изобретению целого ряда антибиотиков пригодных для лечения самых разнообразных инфекций вызванных бактериями. При этом оказалось, что некоторые антибиотики могут быть использованы для лечения грибковых инфекций или для разрушения злокачественных опухолей. Термин «антибиотик» происходит от греческих слов anti, что означает против и bios - жизнь, и буквально переводится, как «лекарство против жизни». Несмотря на это антибиотики спасают, и будут спасать миллионы жизней людей.

Основные группы известных на сегодняшний день антибиотиков

Бета-лактамные антибиотики.Группа бета-лактамных антибиотиков включает две большие подгруппы известнейших антибиотиков: пенициллины и цефалоспорины, имеющих схожую химическую структуру.Группа пенициллинов. Пенициллины получаются из колоний плесневого грибка Penicillium, откуда и происходит название этой группы антибиотиков. Основное действие пенициллинов, связано с их способностью угнетать образование клеточной стенки бактерий и тем самым подавлять их рост и размножение. В период активного размножения многие виды бактерий очень чувствительны по отношению к пенициллину и потому действие пенициллинов бактерицидное.

Важным и полезным свойством пенициллинов является их способность проникать внутрь клеток нашего организма. Это свойство пенициллинов позволяет лечить инфекционные болезни, возбудитель которых «прячется» внутри клеток нашего организма (например, гонорея). Антибиотики из группы пенициллина обладают повышенной избирательностью и потому практически не влияют на организм человека, принимающего лечение. К недостаткам пенициллинов можно отнести их быстрое выведение из организма и развитие резистентности бактерий по отношению к этому классу антибиотиков. Биосинтетические пенициллины получают напрямую из колоний плесневых грибков. Наиболее известными биосинтетическими пенициллинами являются бензилпенициллин и феноксиметилпенициллин. Эти антибиотики используют для лечения ангины, скарлатины, пневмонии, раневых инфекций, гонореи, сифилиса.

Полусинтетические пенициллины получаются на основе биосинтетических пенициллинов путей присоединения различных химических групп. На данный момент существует большое количество полусинтетический пенициллинов: амоксициллин, ампициллин, карбенициллин, азлоциллин. Важным преимуществом некоторых антибиотиков из группы полусинтетических пенициллинов является их активность по отношению к пенициллинустойстойчивым бактериям (бактерии, разрушающие биосинтетические пенициллины). Благодаря этому полусинтетические пенициллины обладают более широким спектром действия и потому могут использоваться в лечении самых разнообразных бактериальных инфекций. Основные побочные реакции, связанные с применением пенициллинов носят аллергический характер и иногда являются причиной отказа от использования этих препаратов.

Группа цефалоспоринов. Цефалоспорины также относятся к группе бета-лактамных антибиотиков и обладают структурой, схожей со структурой пенициллинов. По этой причине некоторые побочные эффекты их двух групп антибиотиков совпадают.

Цефалоспорины обладают высокой активностью по отношению к широкому спектру различных микробов и потому используются в лечении многих инфекционных болезней. Важным преимуществом антибиотиков из группы цефалоспоринов является их активность по отношению к микробам устойчивым к действию пенициллинов (пенициллиноустойчивые бактерий). Существует несколько поколений цефалоспоринов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

«История становления и развития антибиотикотерапии»

Введение

Жизнь против жизни

Заключение

Список литературы

Введение

Ценность антибиотиков как лекарств ни у кого не вызывает сомнения. Почти каждый взрослый человек испытал их целебное действие на себе. Кому они помогли выздороветь, а кому и спасли жизнь. Антибиотики совершенно изменили структуру заболеваемости -- острозаразные болезни, гнойные заболевания, воспаление легких, еще совсем недавно бывшие основной причиной смерти людей, теперь отодвинуты на задний план. Антибиотики преобразили хирургию, создав условия для выполнения сложных операций, позволили резко снизить детскую смертность. Они преобразовали животноводство, растениеводство, целые отрасли пищевой промышленности. Среднегодовой прирост объема потребления антибиотиков в развитых странах составляет 7--9% и пока тенденция к спаду не предвидится.

Жизнь против жизни

Все началось с обычной зеленой плесени. Первым, кто описал удивительные свойства зеленоватого пушистого налета, неведомо откуда поселяющегося на забытых пищевых остатках, был профессор Военно-медицинской академии В. А. Монассейн. Его статья «Об отношении бактерий к зеленому кистевику и о влиянии некоторых средств на развитие этого последнего», в котором рассказывалось о способности плесени убивать микробов, появилась в печати более ста лет назад -- в 1871 г. Через год в статье «Патологическое значение плесени» профессор А. Г. Полотебнов сообщил о своих попытках использовать плесень для лечения гнойных ран. Позднее способность одних микроорганизмов подавлять рост и размножение других была описана многими авторами. Луи Пастер, наблюдавший борьбу между микробами, предсказывал использование этого явления с целью лечения больных.

В 1896 г. итальянский врач Б. Гозио, изучавший причины поражения риса плесенью, выделил культуру зеленоватого микроскопического гриба. Жидкая среда, в которой рос этот гриб, оказывала губительное действие на бактерии сибирской язвы. Фактически в руках Б. Гозио был первый в мире антибиотик, однако он не получил практического применения и был забыт. Немецкие ученые Р. Эммерих и О. Лев из культуры синегнойной палочки (по-латыни она называется пиоцианеум) получил препарат пиоцианазу, который пытались использовать для лечения ран. Одновременно советский ученый Н. Ф. Гамалея из культуры той же палочки получил препарат пиокластин. Однако из-за непостоянства лечебного эффекта этих препаратов их вскоре перестали применять. В 1913 г. в Америке микробиологи Альсберг и Блек получили антибиотическое вещество из культуры гриба, принадлежавшего к семейству пенициллиумов. Они назвали это вещество пенициллиновой кислотой и собирались применить в клинике, но из-за начала первой мировой войны исследования остались незавершенными.

В 1889 г. француз Вюльмен, собрав все сведения о взаимном влиянии микробов, сформулировал очень важное положение «Когда два живых тела тесно соединяются, и одно из них оказывает разрушительное действие на другое, можно сказать, что происходит антибиоз» (от греч. «анти» -- против, «биос» -- жизнь). Так было произнесено слово, от которого произошло название «антибиотики» -- вещества, вырабатываемые одним живым организмом для разрушения другого живого организма. Борьба живого с живым оказалась очень выгодна для человека.

Самое выдающееся медицинское открытие XX века было сделано в один из сентябрьских дней 1928 года в крохотной лаборатории, теснящейся под лестницей. Вряд ли оно было случайным, как принято думать: Александр Флеминг, бактериолог лондонской больницы Святой Марии, шел к нему более полутора десятков лет -- и все-таки, наверное, было бы несправедливо вовсе отвергать элемент случайности в этом открытии.

Впоследствии Прайс, ставший известным ученым, так напишет об этом дне: «Меня поразило, что Флеминг не ограничился наблюдениями, а тотчас же принялся действовать. Многие, обнаружив какое-нибудь явление, чувствуют, что оно может быть замечательным, но лишь удивляются и вскоре забывают о нем. Флеминг был не таков...»

Что такое плесень? Это растительные организмы, крошечные грибки, размножающиеся в сырых местах. Внешне плесень напоминает войлочную массу белого, зеленого, коричневого и черного цвета. Вырастает плесень из спор -- микроскопических живых организмов, невидных невооруженным глазом. Микологии -- науке о грибах -- известны тысячи разновидностей плесени. Грибок, так заинтересовавший Флеминга, назывался Penicillium notatum. Впервые он был найден шведским фармакологом Вестлингом на сгнивших листах кустарника иссопе.

В тот день он перебирал в своей маленькой лаборатории чашки Петри со старыми культурами бактерий. Эти чашки, названные по имени их изобретателя, похожи на коробочки, в которых продается гуталин. Они только пошире и сделаны из стекла. Чашки заполняют обезжиренным бульоном с добавлением особого вещества агар-агара, получаемого из морских водорослей. Благодаря агар-агару, который очень напоминает желатин, бульон застывает и образует твердый студень. Для человека такой студень не слишком привлекателен, а для микробов -- лакомое блюдо. Стоит на поверхность студня попасть хоть одному микробу, как он начинает быстро размножаться. Особенно быстро размножение микробов происходит при температуре человеческого тела -- 37°С. Поэтому чашки Петри, после того как на них посеят микробы, ставят в специальные шкафы (термостаты), поддерживающие нужную температуру. Через сутки каждый микроб, многократно разделившись, превратится в небольшое микробное селение -- колонию. Похожа такая колония на круглую бляшку -- налет на агаре. Опытный микробиолог уже по форме, цвету и характеру поверхности колонии может определить тип микроба.

Доктор Флеминг, просматривая старые посевы, ворчал. Поскольку крышки в процессе работы многократно открывались, во многие из них залетали посторонние микробы. Особенно мешала плесень, для развития и роста которой высокая температура не требуется. Если в чашку попал один плесневый гриб, то он начинает расти, постепенно наплывая на более ранние культуры. пенициллин плесень аллергия медицина

Но вдруг Флеминг остановился. Что такое? В одной из чашек плесени вроде бы и не много, но культуры стафилококков -- микробов, вызывающих нагноения, -- вокруг нее исчезли. Они как бы растворились. Дальше шли сильно измененные колонии, желтоватые бляшки превратились в прозрачные капельки. И только совсем у края чашки сохранилось несколько микробных поселений.

Пробурчав под нос: «Это очень интересно», -- Флеминг соскоблил часть плесени и бросил в бутылку с бульоном. Через несколько дней в бутылке из отдельных крошечных грибов выросли нити, которые, разветвляясь, образовали сплошную волокнистую массу. На вид это была обычная ничем не примечательная плесень, которая вырастает на забытой корке хлеба или завалявшихся фруктах.

Позднее Флеминг ставил решающий опыт. В центре чашки он поместил маленький кусочек плесени, а вокруг -- по капельке разных бактерий. Капельки он размазал по студню в виде лучей, идущих от центра. Через пару дней и плесень, и бактерии размножились. Подавляя дрожь в руках, исследователь поднес чашку к свету и сразу увидел, что опыт удался. За счет массы бактерий лучи стали хорошо видны. Но некоторые из них проросли полностью, а другие только у края чашки. Плесень убила их на расстоянии нескольких сантиметров. Самым примечательным было то, что эта плесень -- «пенициллиум нотатум», таково было ее научное название, выделяла яд, который действовал губительно на микробов, особо опасных для человека. Погибли стрептококки, вызывающие воспаление в горле, стафилококки, вызывающие нагноения, пневмококки, вызывающие воспаление легких, погибли дифтерийные палочки и даже палочки сибирской язвы -- страшной болезни, спасения от которой не было. Но может быть яд, выделяемый плесенью, опасен и для самой человека? Бульон из бутылки отфильтровывается и вводится мыши. Никаких признаков отравления не наблюдается. Вместе с тем достаточно капнуть этот бульон в стакан с чистой культурой микробов, как все они погибают.

Все хорошо, но бульон нельзя вводить человеку ни под кожу, ни в мышцу, ни тем более в вену. Именно поэтому Флеминг предложил использовать его для лечения ран.

Вот эта работа и вызвала неудовольствие всемирно известного микробиолога, действительного члена многих академий и научных обществ, профессора Лондонского университета сэра Алмрот Эдуард Райта. В один из ноябрьских дней 1929 г. Райт был сердит как никогда. Самое худшее, что сердиться приходилось на одного из своих любимых учеников, доктора Александра Флеминга, который, несмотря на постоянные споры с учителем, пока не доставлял ему огорчения. Сегодня утром Флем, как звали Флеминга в лаборатории, принес на подпись статью, в которой значилось: «Определенный вид пенициллиум (плесневого гриба) вырабатывает в питательной среде мощное антибактериальное вещество». И дальше: «Предлагается применить его в качестве эффективного антисептика -- противогнилостного средства».

Как? Разве он, Райт, не доказал, что при лечении инфекционных и других болезней, вызываемых микробами, следует полагаться только на защитные силы самого организма и предохранительные прививки? Разве не с этим упорным шотландцем в годы первой мировой войны они доказали, что все (!!!) вещества, в том числе и карболовая кислота, убивающая микробы в пробирке, на хирургических инструментах и вообще на предметах, не способствуют, а препятствуют заживлению ран. Как не понять, что любой способ воздействия на микробы (холод, огонь, яд) обязательно должен приводить также и к гибели клеток человеческого тела. Такие вещества могут быть применены разве что на коже, которая защищена от губительного действия яда слоем роговых чешуек. «Кажется я достаточно четко писал, -- думал Райт, -- что лечение инфекционных заболеваний у человека путем введения в организм химических синтетических веществ (химиотерапия) невозможно и никогда не будет осуществлено. Флема сбил с истинного пути фантазер Пауль Эрлих. Ну, не фантазия ли? Этот австриец хочет создать такое лекарство, которое, будучи введено в кровь человека, сумело бы распознавать среди его клеток врага, миновало бы, обошло клетки тела хозяина, нашло и убило незваного микробного пришельца. Не зря Эрлих назвал свою мечту «волшебной пулей». Это действительно больше похоже на волшебство, чем на серьезную науку. Конечно, Флем начнет напоминать мне о хинине и эрлиховском сальварсане. Но что из того? Они излечивают малярию и сонную болезнь! Ведь эти болезни вызывают не настоящие микробы. Причина их -- плазмодий и трипаносомы, которые хотя действительно очень просты по строению, но все же представляют собой маленьких животных, устроенных намного сложнее, чем бактерии. Одно дело стрелять волшебной пулей в слона, окруженного охотниками, другое дело в комара, сидящего у охотника на носу».

Недовольство статья вызвала не только Райта. Даже после опубликования, статья не вызвала у медиков никакого энтузиазма. А все потому, что пенициллин оказался очень нестойким веществом. Он разрушался уже при самом кратковременном хранении, а тем более при попытке выпарить содержащий его бульон. Когда в 1939 г. Флеминг обратился за помощью в Лондонское химическое общество, то получил ответ: «Вещество слишком нестойкое и с химической точки зрения не заслуживает никакого внимания».

Может быть в том, что на пенициллин долго не обращали внимания, частично был виноват сам Флеминг. Он не был хорошим оратором, способным увлечь своей идеей окружающих. Вот что он пишет сам: «Об этом явлении чрезвычайной важности было напечатано в 1929 г. ...Я говорил о пенициллине в 1936 году..., но не был достаточно красноречив, и мои слова прошли незамеченными». А говорил-то не где-нибудь, а с трибуны Международного съезда микробиологов!

Приближение войны заставило многих ученых пересмотреть характер своих занятий. Руководитель кафедры патологии Оксфордского университета профессор Г. Флори со своими помощниками решили начать изыскание нового лекарства для борьбы с микробами. Нельзя сказать, что в 1939 г. выбор их был богат, однако поиски можно было начинать не на абсолютно пустом месте. В 1936 г. немецким ученым Домагком был получен красный стрептоцид, который, конечно, можно было усовершенствовать. Была пиоционаза, был, наконец, лизоцим, антибиотик, содержащийся в слюне и слезах человека, открытый тем же Флемингом в 1922 г. Однако выбор пал на плесневый гриб. Может быть потому, что один из основных помощников профессора Э. Чейн был биохимиком и предполагал, что действующим началом культуры плесени является фермент?

Вначале Чейна преследовали неудачи. Едва удалось обнаружить в растворе пенициллин, как последний бесследно исчез. Прежде всего, был установлен факт, что пенициллин сохраняется в щелочных растворах, в слабом растворе соды, например. Было выявлено и другое свойство этого неуловимого вещества -- его способность переходить в эфир. Чейн ставил раствор в ящик со льдом. Пенициллин смешивался с эфиром, и в сосуде образовывалось два слоя. Чейн удалял водяной слой. В сосуде оставался пенициллин, растворенный в эфире. Для того чтобы сохранить его, добавлялась щелочь, и реакция шла в обратном направлении -- пенициллин переходил в щелочной раствор. Вода осторожно выпаривалась, и на дне сосуда оставалась слизистая масса, содержащая в себе пенициллин. Чейн замораживал ее, потом высушивал и, наконец, получал ничтожное количество коричневого порошка. Это и был пенициллин.

Первые же опыты с веществом, выделенным Чейном из плесневого бульона, буквально ошеломили ученых. Хитли разводил его в сотни тысяч раз, и всего лишь одной капли этого раствора оказывалось достаточно, чтобы остановить рост самых патогенных микробов, засеянных в чашках Петри. Пенициллин оказался в МИЛЛИОН раз активнее, чем плесневой фильтрат, с которым экспериментировал Флеминг.

Уже через год оксфордская группа ученых получила первые порции препарата. По правде говоря, пенициллина в той желтоватой жидкости, которую демонстрировали радостные ученые своим коллегам, содержалось всего 1%. Но все же это было лекарство. Сначала с его помощью были излечены мыши, зараженные смертельной дозой стафилококка, а потом очередь дошла и до человека. 12 февраля 1941 г. с помощью пенициллина была сделана попытка спасти мужчину, который погибал от заражения крови. Он неосторожно расковырял ранку в углу рта, и теперь был обречен на смерть. Несколько инъекций пенициллина в течение одного дня улучшили его состояние, однако имеющегося количества пенициллина оказалось недостаточным. Таким образом, спасти первого больного не удалось.

Несмотря на трагический исход, ценность препарата стала совершенно очевидной, что и было отмечено во всех газетах Англии. Газета «Тайме» поместила статью А. Райта: «Лавровый венок должен быть присужден Александру Флеммингу. Это он первым открыл пенициллин и первый предсказал, что это вещество может найти широкое применение в медицине». Профессор вместе со всем человечеством склонил голову пред своим гениальным учеником.

Дальнейший путь пенициллина, тем не менее, отнюдь не был усыпан розами. Несмотря на то, что война уже шла, и кругом миллионы людей погибали от гнойных ран, правительство Великобритании не хотело раскошелиться на строительство специального завода, отговариваясь тем, что якобы Англия подвергается слишком усиленным бомбежкам. Может быть, дела так и не сдвинулись с мертвой точки, если бы не энергия и не активность сотрудника Флеминга Г. Флори. Он быстро нашел и деньги для работы, и людей, которые ему помогли, в США. Исследования закипели. Для получения более активного гриба, выделяющего пенициллин в достаточных количествах, была организована доставка образцов плесени не то что изо всех уголков страны, но и со всех частей света. Самое забавное в том, что найдена такая плесень была буквально под самым носом, она росла на дыне, принесенной с городской свалки. Вскоре дело продвинулось так далеко, что был начат промышленный выпуск пенициллина.

Первым человеком, вылеченным с помощью пенициллина, была маленькая девочка, болезнь которой началась с горла, а потом распространилась на сердце. Микробы, которые вызвали у нее ангину, проникли в кровь и осели на внутренней оболочке сердечной мышцы. Как и всех других больных, пораженных таким недугом, ее ждала неминуемая смерть. Врач, который лечил девочку, упросил Флори дать ему пенициллин. Хотя никто о таком применении пенициллина раньше не думал, но очень уж жаль было девочку. Раствор пенициллина был введен ей, когда она уже умирала. Полученный эффект превзошел все ожидания -- девочке сразу стало лучше, и она стала поправляться.

Вскоре после этого случая Флеминг сам впервые ввел раствор пенициллина в спинномозговой канал своему другу, который заболел гнойным воспалением мозговых оболочек. Неминуемая, казалось бы, смерть отступила и на этот раз. Потом уже пенициллином начали лечить английских летчиков, получивших ранения в воздушных боях над Лондоном. Под влиянием антибиотика гнойные раны очищались, ожоги зарастали кожей, гангрена отступала. Действие лекарства было похоже на мановение волшебной палочки.

Первооткрыватели пенициллина Флеминг, Флори и Чейн, понимая все значение этого лекарства для человечества, не засекретили свое лекарство, как это обычно делается, однако каждая страна должна была получить свой пенициллин. В Советском Союзе эту трудную и почетную работу выполнила Зинаида Виссарионовна Ермольева со своими помощниками. Под бомбежками, в тяжелых условиях военного времени, были собраны образцы плесени, и каждый из них испытан на способность выделять пенициллин. Наконец, полученный гриб, который оказался даже лучше американского, но назывался не нотатум, а крустозум, помещен в ферментатор. В кратчайшие сроки выпуск пенициллина был налажен в промышленных масштабах, и первые его порции начали поступать в госпитали и непосредственно на фронт. Вместе со своим лекарством отправилась на фронт и профессор З. В. Ермольева. Там, на поле боя, нашлось новое применение пенициллину -- предупреждение нагноения. Рана только что получена, гноя еще нет, но микробы уже внутри раны, вместе с осколком, землей, обрывками одежды. Если пенициллин ввести сразу после ранения, то и размножения микробов не происходит -- рана зарастает без всяких осложнений. Благодаря новому методу, врачи сумели не просто вылечить, а возвратить в строй 72% раненых! Пенициллин, таким образом, тоже воевал.

Сорок лет назад был осуществлен первый промышленный выпуск пенициллина. С этого же времени и поныне продолжается его триумфальное шествие по земному шару. А человек, открывший новую эпоху в жизни человечества, был необычайно скромен. В 1945 г. по поводу вручения ему Нобелевской премии Флеминг сказал: «Мне говорят, что я изобрел пенициллин. Нет, я только обратил на него внимание людей и дал ему название».

Когда в 1945 г. Американская медицинская ассоциация поставила перед учеными вопрос: «Какое лекарство вы считаете наиболее ценным?», то 99% опрошенных ответили: «Антибиотики». Но ведь это было только начало. Весну делали только первые ласточки-. В 1945 г. был открыт четвертый антибиотик -- хлортетрациклин, а 1947 г. -- пятый -- левомицетин, а уже к 1950 г. было описано более 100 антибиотиков. В 1955 г. их было уже более 500. Сейчас открыто и изучено примерно 4000 соединений, причем 60 из них нашли широкое применение в медицине. Среди этого набора можно найти антибиотики, которые действуют на микробов, вызывающих нагноение, и на микробов, повинных в заболевании легких, и на микробов, поселяющихся в желудочно-кишечном тракте. Есть антибиотики, пригодные для лечения детей и для лечения стариков.

Кстати сказать, многие из них выделены из земли. Советский ученый Н. А. Красильников, изучив свойства бактерий чуть ли не всех областей нашей страны, обнаружил, что наиболее богаты производителями антибиотиков земли Казахстана -- в каждом грамме пахотной земли содержится 380 000 микроскопических фармацевтических фабрик. Так что кладовая антибиотиков не исчерпана.

И все же, несмотря на достоинства новых препаратов, пенициллин до сих пор остается самым распространенным. Только в США этот препарат ежегодно выпускается в количестве 1500 т! Почему?

Во-первых, он очень активен. Судите сами. Для того чтобы подавить жизнедеятельность микроба в ведре воды, в него нужно добавить не менее 10 г карболовой кислоты (она обычно используется как стандарт) или 1 г фурациллина, или 0,1 г норсульфазола, или 0,01 г пенициллина. Речь идет, разумеется, о чувствительных к этим препаратам микробах. Но главное, пожалуй, все же не активность, так как существуют другие не менее активные антибиотики.

Во-вторых, и это главное, пенициллин почти совсем не оказывает на человека токсического действия. Обычно для оценки степени ядовитости того или иного вещества определяют его смертельную дозу для мышей. Чем больше эта доза, тем вещество менее ядовито. Так вот, чтобы вызвать гибель мыши, ей необходимо ввести внутривенно один из следующих антибиотиков: нистатин в дозе 0,04 мг, грамицидин -- 0,4 мг, тетрациклин -- 1 мг, стрептомицин -- 5 мг, а пенициллин -- 40 мг. Учитывая, что человек в 3500 раз больше мыши, то в 1 мг содержится 1660 ЕД (единица действия) пенициллина, что самые большие ампулы препарата, используемые лишь при крайне тяжелых заболеваниях, содержат по 1 000 000 ЕД, не трудно подсчитать опасную для человека дозу. Она содержится в 233 ампулах при условии, что содержимое этих ампул будет вводиться единовременно. Согласитесь, что это говорит о полной безвредности пенициллина.

В-третьих, пенициллин можно назначать не только взрослым, но и детям, он безопасен и для беременных женщин, чего нельзя сказать о других антибиотиках. Некоторые из них, например левомицетин, просто запрещено назначать новорожденным, другие назначают с большой осторожностью и по особым показаниям. Стрептомицин, неомицин и подобные им антибиотики вызывают у людей глухоту, поражая слуховой нерв. Дети обладают повышенной чувствительностью к стрептомицину, а обнаружить начальные стадии поражения нерва у них труднее, чем у взрослых. Как ни стараются ограничить его применение, а все же 12% глухонемых детей являются жертвами стрептомицина. Тетрациклин опасен для беременных женщин. В первые месяцы беременности он может вызвать возникновение уродства плода, а при приеме в последние месяцы -- отложиться в костях и зачатках зубов будущего ребенка. Кости с тетрациклином медленнее растут, а зубы окрашиваются в коричневый цвет и быстрее портятся. По этой же причине тетрациклин стараются не назначать детям до 5 лет.

Как ни хорош пенициллин, но и он не идеален в отношении безвредности. Оказывается, что при повторном применении у людей развивается к нему не только повышенная, но и извращенная чувствительность. Такое состояние в медицине носит название аллергии. Чем дольше пенициллин применяется, тем больше становится аллергизированных людей, которым он противопоказан.

Кроме того, пенициллин действует лишь на сравнительно небольшое число микробов, а потому эффективен лишь при строго определенных болезнях. Набор микроорганизмов, которые могут быть обезврежены при применении антибиотиков, называется спектром их действия. У пенициллина спектр противомикробного действия намного уже, чем, скажем, у тетрациклина. Это является его недостатком.

Самый же большой недостаток пенициллина состоит в том, что микробы к нему сравнительно быстро привыкают. Если в первые годы его действие напоминало мановение волшебной палочки, чудо, воскрешение из мертвых, то теперь такие чудесные выздоровления встречаются все реже. Иногда приходится слышать, что пенициллин «ныне пошел не тот». Это неверно. Пенициллин тот же, но микробы стали другие. Они научились вырабатывать особое вещество, фермент, который разрушает пенициллин. Называется он пенициллиназа. Если микроб вырабатывает пенициллиназу, то пенициллин на него не действует.

Особенно быстро устойчивость к пенициллину развивается у стафилококков, которые образно называют «чумой XX века». За годы, прошедшие с начала применения пенициллина, их чувствительность к этому антибиотику снизилась в 2000 раз! В 1944 г. только 10% штаммов стафилококков были устойчивы к пенициллину. В 1950 г. их число возросло до 50, в 1965 г. -- до 80, а в 1975 г. -- до 95%. Можно считать, что на стафилококки пенициллин больше не действует.

Интересно, что не все препараты сдают свои позиции одинаково быстро. Медленно теряют активность тетрациклины и левомицетин, а вот устойчивость микробов к стрептомицину, к сожалению, развивается очень быстро. Уступая просьбам фтизиатров (специалистов по лечению туберкулеза), врачи прочих специальностей почти совсем прекратили его применение, чтобы он не утратил своего действия полностью. Так же быстро теряет эффективность эритромицин. В результате к пенициллину теперь не чувствительно приблизительно 75% штаммов, к левомицетину -- 50%, к тетрациклину -- 40%. Отличаются по способности приобретать устойчивость и микробы. Наиболее быстро привыкают к антибиотикам микробы, вызывающие заболевания желудочно-кишечного тракта, наиболее медленно -- пневмококки (легочные кокки).

В 1977 г. группа канадских специалистов проанализировала использование антибиотиков в больнице города Гамильтона. Оказалось, что хирурги применяли антибиотики неправильно в 42%, а терапевты -- в 12% случаев. Случаи неправильного применения антибиотиков отмечались, во-первых, при назначении их с профилактическими целями. За исключением особых ситуаций, которые можно пересчитать по пальцам, такое назначение не приводит к успеху. Второе место занимают случаи назначения антибиотиков в недостаточных дозах или реже, чем это нужно для поддержания высокой концентрации в крови. На третьем месте стоит использование антибиотиков для местного лечения. Как теперь точно установлено именно при таком способе применения устойчивость микробов развивается особенно быстро. Существует много других лекарств (йодинол, раствор перекиси водорода, фурацилин, препараты ртути и серебра, краски), которые следует использовать для местного лечения.

Чтобы повысить эффективность лечения и предупредить развитие чувствительности в большинстве стран, как и в нашей стране, продажа антибиотиков без рецепта врача запрещена. Понятно почему? Если уж врачи иногда могут использовать их неправильно, то несведущие в медицине люди и подавно. Все антибиотики разделены на две подгруппы: основные -- пенициллин, левомицетин, тетрациклины, эритромицин, неомицин и резервные -- все остальные. Основными антибиотиками начинают лечить сразу, до того как будет установлена чувствительность микробов. Резервные антибиотики применяются только по особым показаниям, когда эффект основных антибиотиков уже полностью исчерпан. Наиболее часто применяют комбинацию тетрациклина с олеандомицином -- препарат олететрин. Тут сразу в одной таблетке содержатся оба антибиотика в наиболее выгодной пропорции.

При сочетании двух антибиотиков требуется максимум осторожности и делать это можно только по назначению врача. В некоторых случаях сочетание двух препаратов может не усилить, а ослабить действие каждого из них. Примером такого неудачного сочетания может служить смесь из пенициллина с левомицетином или тетрациклином. В некоторых случаях комбинация антибиотиков между собой или с другими препаратами может повести к резкому усилению побочного эффекта и отравлению. Совместное применение левомицетина и сульфаниламидных препаратов приводит к подавлению кроветворения. Одновременное применение стрептомицина с неомицином может привести к глухоте. Антибиотики -- лучший пример для иллюстрации того, что одно и то же лекарство может быть спасением для одного и ядом для другого.

Еще в то время, когда пенициллин продолжал свое триумфальное шествие по миру, ученые начали искать ему достойную смену. Вскоре после войны в лаборатории Флори был изучен новый гриб Цефалоспорум, который был выловлен в одной из сточных труб острова Сардинии. Оказалось, что гриб вырабатывает не один, а сразу семь антибиотиков. Один из них под названием цефалоспорин «С» стал использоваться в клинике вместо пенициллина. Основное его достоинство заключалось в том, что он был еще менее ядовит (если так можно выразиться), чем пенициллин, действовал на тех же микробов, но его можно было назначать больным, обладающим к пенициллину повышенной чувствительностью. Поскольку цефалоспорин очень похож на пенициллин, условно можно назвать его «внуком» первого антибиотика.

Вслед за «внуком» появились и «правнуки». Ученые разложили цефалоспорин на составные части и из них уже синтетическим путем получили новые препараты -- полусинтетические цефалоспорины. В нашей стране популярен антибиотик цепорин, который отличается очень высокой активностью и действует на утративших чувствительность к пенициллину стафилококков.

Заключение

С открытием пенициллина началась новая эра в лечении больных. Современным врачам трудно понять, насколько бессильны были их предшественники в борьбе с некоторыми инфекциями. Им незнакомо отчаяние, овладевавшее докторами, когда они сталкивались с болезнями, смертельными в те времена, а теперь излечимыми. Некоторые из этих заболеваний даже перестали существовать. Пенициллин и все антибиотики, открытые после него, дают возможность хирургу производить такие операции, на которые раньше никто бы не решился. Средняя продолжительность жизни человека настолько возросла, что изменилась вся общественная структура. Только Эйнштейн - но в другой области - и еще Пастер оказали такое же, как Флеминг, влияние на современную историю человечества. Государственные деятели трудятся изо дня в день над устройством мира, но лишь люди науки своими открытиями создают условия для их деятельности.

Пенициллин в борьбе с инфекциями привел к ослаблению вирулентности микробов. Только отдельные штаммы их еще сопротивляются и усиливают свою вирулентность, основные же отряды повержены в прах. Многие болезни, как пневмония, менингит, стали более легкими в своем течении.

Заражение крови и гнойные воспаления брюшины (перитонит), от которых раньше наступала неминуемая смерть, перестали пугать врачей, вооруженных ампулами с пенициллином.

Отступили и другие смертельные враги человечества. Эпидемический менингит перестал страшить нас, так как пенициллин дает почти 100-процентное исцеление от него, а ведь раньше появление эпидемии этой болезни вызывало у родителей панический ужас. Они знали, что 90 процентов заболевших должны были быть принесены в жертву ненасытному молоху смерти.

Пенициллин излечивает не только смертельные болезни, но и многие тяжелые заболевания, которые еще недавно делали человека инвалидом.

Он с успехом применяется при скарлатине и дифтерии. Он в несколько дней вылечивает от гонореи, убивает спирохету сифилиса, без осечки помогает при всех воспалительных процессах, вызываемых кокками...

Сейчас уже официально признано, что средняя продолжительность жизни в цивилизованных странах резко повысилась благодаря пенициллину, победившему самые злые инфекции.

Средняя продолжительность жизни человека равнялась в Европе XVI века 21 году, XVII века - 26 годам, XVIII века - 34 годам, в Европе конца XIX века - 50 годам. А теперь в отдельных странах средняя продолжительность жизни человека достигает 60 лет (в нашей же стране, учитывая еще благоприятные социальные условия, - 67 лет).

Таковы заслуги А. Флеминга перед человечеством. Но они не исчерпываются этим. Получив пенициллин, Флеминг открыл новую эру в истории медицины - эру антибиотической терапии.

Открытие Флеминга - одно из самых удивительных в науке. Оно, на наш взгляд, по своей значимости и масштабу вполне отвечает нашему атомному веку, и есть нечто глубоко справедливое в том, что оно пришло вместе с развитием атомной физики. Медикам, следовательно, тоже есть чем гордиться.

Литература

Прозоровский В.Б. «Рассказы о лекарствах» - М.: Медицина, 1986.

Моруа А. «Жизнь А. Флеминга». - М. Молодая гвардия. «ЖЗЛ» - 1964.

Семенов-Спасский Л.Г. «Вечный бой». - Л.: Детская литература, 1989

Размещено на Allbest.ru

...

Подобные документы

    Открытие одного из первых антибиотиков - пенициллина, спасшего не один десяток жизней. Оценка состояния медицины до пенициллина. Плесень как микроскопический грибок. Очистка и массовое производство пенициллина. Показания для применения пенициллина.

    презентация , добавлен 25.03.2015

    Значение открытий Флеминга, краткие биографические сведения об ученом, его путь к открытиям в медицине. Открытие лизоцима, его перспективы использования в медицинской практике. Получение Нобелевской премии по физиологии и медицине за открытие пенициллина.

    презентация , добавлен 16.04.2010

    Источники получения антибиотиков, их классификация по направленности и механизму фармакологического действия. Причины резистентности к антибиотикам, принципы рациональной антибиотикотерапии. Бактерицидные свойства пенициллина, его побочные эффекты.

    презентация , добавлен 16.11.2011

    Общая характеристика антибиотиков и особенности их получения. Схема производства пенициллина. Использование рДНК-биотехнологии. Применение антибиотиков в пищевой промышленности и сельском хозяйстве. Классификация антибиотиков по штаммам-продуцентам.

    презентация , добавлен 04.12.2015

    Разработка и производство антибиотиков, хронология изобретений. История открытия пенициллина и его целебного воздействия при различных инфекционных болезнях. Бактериостатические и бактерицидные антибиотики, их свойства и применение; побочные действия.

    презентация , добавлен 18.12.2016

    Понятие и назначение, физические и химические свойства пенициллина, история его открытия и значение в лечении разнообразных заболеваний. Характер воздействия пенициллина на микроорганизмы. Синтетические аналоги данного лекарства, их использование.

    презентация , добавлен 07.11.2016

    Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа , добавлен 24.05.2014

    Общая характеристика антимикробных препаратов. Классификация химиотерапевтических средств. Открытие пенициллина в 1928г. Механизмы развития антибиотикорезистентности. Механизм действия антибиотиков. Характеристика и применение антибактериальных средств.

    презентация , добавлен 23.01.2012

    История открытия пенициллина. Классификация антибиотиков, их фармакологические, химиотерапевтические свойства. Технологический процесс получения антибиотиков. Устойчивость бактерий к антибиотикам. Механизм действия левомицетина, макролидов, тетрациклинов.

    реферат , добавлен 24.04.2013

    Характеристика положительных и негативных свойств антибиотиков. Обобщение основных осложнений, вызванных приемом антибиотиков и объединенных одним названием "лекарственная болезнь": аллергические реакции, токсические явления, дисбактериозы, суперинфекция.

Сложно представить сейчас, что такие заболевания как пневмония, туберкулёз и ЗППП всего 80 лет назад означали смертный приговор для пациента. Действенных лекарственных средств против инфекций не было, и люди умирали тысячами и сотнями тысяч. Ситуация становилась катастрофичной в периоды эпидемий, когда в результате вспышки тифа или холеры гибло население целого города.

Сегодня в каждой аптеке антибактериальные препараты представлены в широчайшем ассортименте, а вылечить с их помощью можно даже такие грозные болезни, как менингит и сепсис (общее заражение крови). Далёкие от медицины люди редко задумываются о том, когда изобрели первые антибиотики, и кому человечество обязано спасением огромного количества жизней. Ещё труднее представить, как лечили инфекционные болезни до этого революционного открытия.

Жизнь до антибиотиков

Ещё из курса школьной истории многие помнят, что продолжительность жизни до эпохи Новейшего времени была очень небольшой. Дожившие до тридцатилетнего возраста мужчины и женщины считались долгожителями, а процент детской смертности достигал невероятных значений.

Роды были своеобразной опасной лотереей: так называемая родильная горячка (инфицирование организма роженицы и смерть от сепсиса) считалась обычным осложнением, а лекарств от неё не было.

Ранение, полученное в сражении (а воевали люди во все времена много и практически постоянно), приводило обычно к смерти. И чаще всего не потому, что повреждались жизненно важные органы: даже травмы конечностей означали воспаление, заражение крови и смерть.

Древняя история и Средневековье

Древний Египт: заплесневевший хлеб как антисептик

Тем не менее, люди с древних времён знали о целебных свойствах некоторых продуктов в отношении инфекционных заболеваний. Например, ещё 2500 лет назад в Китае забродившая соевая мука использовалась для лечения гнойных ран, а ещё раньше индейцы майя с той же целью применяли плесень с особого вида грибов.

В Египте времён строительства пирамид заплесневевший хлеб являлся прототипом современных антибактериальных средств: повязки с ним значительно повышали шанс выздоровления в случае ранения. Использование плесневых грибов имело чисто практический характер до тех пор, пока учёные не заинтересовались теоретической стороной вопроса. Однако до изобретения антибиотиков в их современном виде было ещё далеко.

Новое время

В эту эпоху наука стремительно развивалась во всех направлениях, и медицина исключением не стала. Причины гнойных инфекций в результате ранения или оперативного вмешательства описал в 1867 году Д. Листер, хирург из Великобритании.

Именно он установил, что возбудителями воспаления являются бактерии, и предложил способ борьбы с ними при помощи карболовой кислоты. Так возникла антисептика, которая ещё долгие годы оставалась единственным более или менее успешным методом профилактики и лечения нагноений.

Краткая история открытия антибиотиков: пенициллина, стрептомицина и остальных

Врачи и исследователи отмечали низкую эффективность антисептиков в отношении возбудителей, проникших глубоко в ткани. Кроме того, действие лекарств ослаблялось биологическими жидкостями пациента и было коротким. Требовались более действенные препараты, и учёные всего мира активно работали в данном направлении.

В каком веке изобрели антибиотики?

Явление антибиоза (способности одних микроорганизмов уничтожать другие) было открыто в конце 19 столетия.

  • В 1887 году один из основоположников современной иммунологии и бактериологии – всемирно известный французский химик и микробиолог Луи Пастер – описал губительное действие почвенных бактерий на возбудителя туберкулёза.
  • Опираясь на его исследования, итальянец Бартоломео Гозио в 1896 году получил в ходе экспериментов микофеноловую кислоту, ставшую одним из первых антибактериальных средств.
  • Чуть позже (в 1899) немецкие врачи Эммерих и Лов открыли пиоценазу, подавляющую жизнедеятельность возбудителей дифтерии, тифа и холеры.
  • А ранее – в 1871 году – российские врачи Полотебнов и Манассеин обнаружили губительное действие плесневых грибов на некоторые болезнетворные бактерии и новые возможности в терапии венерических заболеваний. К сожалению, их идеи, изложенные в совместном труде «Патологическое значение плесени», не обратили на себя должного внимания и на практике широко не применялись.
  • В 1894 году И. И. Мечников обосновал практическое использование кисломолочных продуктов, содержащих ацидофильные бактерии, для лечения некоторых кишечных расстройств. Это позднее подтвердили практические исследования русского учёного Э. Гартье.

Тем не менее, эпоха антибиотиков началась в 20 веке с открытия пенициллина, положившего начало настоящей революции в медицине.

Изобретатель антибиотиков

Александр Флеминг — первооткрыватель пенициллина

Имя Александра Флеминга известно из школьных учебников биологии даже далёким от науки людям. Именно он считается первооткрывателем вещества с антибактериальным действием – пенициллина. За неоценимый вклад в науку в 1945 году британский исследователь получил Нобелевскую премию. Интерес для широкой публики представляют не только подробности сделанного Флемингом открытия, но и жизненный путь учёного, а также особенности его личности.

Родился будущий лауреат Нобелевской премии в Шотландии на ферме Лохвильд в многодетной семье Хуга Флеминга. Образование получать Александр начал в Дарвеле, где проучился до двенадцатилетнего возраста. Через два года обучения в академии Килмарнок перебрался в Лондон, где жили и работали старшие братья. Юноша трудился клерком, одновременно являясь студентом Королевского Политехнического института. Заниматься медициной Флеминг решил по примеру брата Томаса (врача-офтальмолога).

Поступив в медицинскую школу при госпитале Святой Марии, Александр в 1901 году получил стипендию этого учебного заведения. Поначалу молодой человек не отдавал выраженного предпочтения какой-либо конкретной области медицины. Его теоретические и практические работы по хирургии в годы учебы свидетельствовали о недюжинном таланте, однако Флеминг не чувствовал особого пристрастия к работе с «живым телом», благодаря чему и стал изобретателем пенициллина.

Судьбоносным для молодого врача оказалось влияние Алмрота Райта – известного профессора патологии, приехавшего в 1902 году в госпиталь.

Ранее Райт разработал и успешно применил вакцинацию от брюшного тифа, однако его интерес к бактериологии этим не ограничился. Он создал группу молодых перспективных специалистов, в которую попал и Александр Флеминг. Получив в 1906 году ученую степень, он был приглашен в команду и работал в исследовательской лаборатории больницы всю свою жизнь.

В годы Первой мировой войны молодой ученый служил в Королевской исследовательской армии в звании капитана. В период боевых действий и позднее, в созданной Райтом лаборатории, Флеминг изучал последствия ранений взрывчатыми веществами и способы профилактики и лечения гнойных инфекций. А пенициллин открыл сэр Александр уже 28 сентября 1928 года.

Необычная история открытия

Не секрет, что многие важные открытия были сделаны случайным образом. Однако для исследовательской деятельности Флеминга фактор случайности имеет особое значение. Еще в 1922 году он совершил свое первое значительное открытие в области бактериологии и иммунологии, простудившись и чихнув в чашку Петри с посевами болезнетворных бактерий. Через некоторое время ученый обнаружил, что в месте попадания его слюны колонии возбудителя погибли. Так был открыт и описан лизоцим – антибактериальное вещество, содержащееся в слюне человека.

Так выглядит чаша Петри с пророщенными грибами Penicillium notatum.

Не менее случайным образом мир узнал и о пенициллине. Здесь нужно отдать должное халатному отношению персонала к санитарно-гигиеническим требованиям. То ли чашки Петри были плохо вымыты, то ли споры плесневого гриба были занесены из соседней лаборатории, но в результате на посевы стафилококка попал Penicillium notatum. Еще одной счастливой случайностью стал длительный отъезд Флеминга. Будущего изобретателя пенициллина месяц не было в госпитале, благодаря чему плесень успела вырасти.

Вернувшись на работу, ученый обнаружил последствия неряшливости, однако не стал сразу выбрасывать испорченные образцы, а пригляделся к ним внимательнее. Обнаружив, что вокруг выросшей плесени колонии стафилококка отсутствуют, Флеминг заинтересовался этим явлением и начал изучать его детально.

Ему удалось определить вещество, вызвавшее гибель бактерий, которое он назвал пенициллином. Понимая важность своего открытия для медицины, британец посвятил более десяти лет исследованиям этого вещества. Были опубликованы работы, в которых он обосновывал уникальные свойства пенициллина, признавая, однако, что на данной стадии препарат непригоден для лечения людей.

Пенициллин, полученный Флемингом, доказал свою бактерицидную активность в отношении многих грамотрицательных микроорганизмов и безопасность для людей и животных. Тем не менее, препарат был нестабилен, терапия требовала частого введения огромных доз. Кроме того, в нем присутствовало слишком много белковых примесей, дававших негативные побочные эффекты. Эксперименты по стабилизации и очистке пенициллина велись британским ученым с тех пор, как самый первый антибиотик был открыт и вплоть до 1939-го года. Однако к положительным результатам они не привели, и Флеминг охладел к идее использования пенициллина для лечения бактериальных инфекций.

Изобретение пенициллина

Второй шанс открытый Флемингом пенициллин получил в 1940-м году.

В Оксфорде Говард Флори, Норман У. Хитли и Эрнст Чейн, объединив свои познания в химии и микробиологии, занялись получением пригодного к массовому использованию препарата.

Около двух лет потребовалось на то, чтобы выделить чистое действующее вещество и испытать его в клинических условиях. На этом этапе к исследованиям был привлечен первооткрыватель. Флемингу, Флори и Чейну удалось успешно вылечить несколько тяжелых случаев сепсиса и пневмонии, благодаря чему пенициллин занял свое законное место в фармакологии.

В последующем была доказана его эффективность в отношении таких заболеваний, как остеомиелит, родильная горячка, газовая гангрена, стафилококковая септицемия, гонорея, сифилис и многих других инвазивных инфекций.

Уже в послевоенные годы было выяснено, что пенициллином можно лечить даже эндокардит. Эта сердечная патология ранее считалась неизлечимой и приводила к летальному исходу в 100% случаев.

Многое о личности первооткрывателя говорит тот факт, что Флеминг категорически отказался патентовать свое открытие. Понимая всю значимость препарата для человечества, он считал обязательным сделать его доступным для всех. Кроме того, сэр Александр весьма скептически относился к собственной роли создания панацеи от инфекционных заболеваний, характеризуя её как «Миф Флеминга».

Таким образом, отвечая на вопрос о том, в каком году изобрели пенициллин, следует называть 1941г. Именно тогда был получен полноценный действенный препарат.

Параллельно разработка пенициллина велась США и России. Американскому исследователю Зельману Ваксману в 1943 удалось получить эффективный в отношении туберкулёза и чумы стрептомицин, а микробиолог Зинаида Ермольева в СССР в это же время получила крустозин (аналог, который почти в полтора раза превосходил зарубежные).

Производство антибиотиков

После научно и клинически подтверждённой эффективности антибиотиков встал закономерный вопрос об их массовом производстве. В то время шла Вторая мировая война, и фронту очень были нужны эффективные средства лечения раненых. В Великобритании возможность изготавливать лекарства отсутствовала, поэтому производство и дальнейшие исследования были организованы в США.

С 1943 года пенициллин стал выпускаться фармацевтическими компаниями в промышленных объёмах и спас миллионы людей, увеличив и среднюю продолжительность жизни. Значимость описанных событий для медицины в частности и истории в целом переоценить трудно, поскольку тот, кто открыл пенициллин, совершил настоящий прорыв.

Значение пенициллина в медицине и последствия его открытия

Антибактериальное вещество плесневого гриба, выделенное Александром Флемингом и усовершенствованное Флори, Чейном и Хитли, стало основой для создания множества различных антибиотиков. Как правило, каждый препарат активен в отношении определённого вида болезнетворных бактерий и бессилен против остальных. Например, пенициллин не эффективен против палочки Коха. Тем не менее, именно разработки первооткрывателя позволили Ваксману получить стрептомицин, ставший спасением от туберкулёза.

Эйфория 50-х годов прошлого века по поводу открытия и массового производства «волшебного» средства казалась вполне оправданной. Грозные заболевания, столетиями считавшиеся смертельными, отступили, и появилась возможность существенно улучшить качество жизни. Некоторые учёные столь оптимистично смотрели в будущее, что предрекали даже скорый и неминуемый конец любым инфекционным заболеваниям. Однако даже тот, кто придумал пенициллин, предупреждал о возможных неожиданных последствиях. И как показало время, инфекции никуда не исчезли, а открытие Флеминга можно оценивать двояко.

Положительный аспект

Терапия инфекционных заболеваний с приходом в медицину пенициллина изменилась радикально. На его основе были получены препараты, эффективные против всех известных возбудителей. Теперь воспаления бактериального происхождения лечатся довольно быстро и надёжно курсом инъекций или таблеток, а прогнозы на выздоровление почти всегда благоприятны. Значительно снизилась детская смертность, увеличилась продолжительность жизни, а смерть от родильной горячки пневмонии стала редчайшим исключением. Почему же инфекции как класс никуда не исчезли, а продолжают преследовать человечество не менее активно, чем 80 лет назад?

Отрицательные последствия

На момент обнаружения пенициллина было известно много разновидностей болезнетворных бактерий. Учёным удалось создать несколько групп антибиотиков, с помощью которых можно было справиться со всеми возбудителями. Однако в ходе применения антибиотикотерапии выяснилось, что микроорганизмы под действием препаратов способны мутировать, приобретая устойчивость. Причём новые штаммы образуются в каждом поколении бактерий, сохраняя резистентность на генетическом уровне. То есть люди своими руками создали огромное количество новых «врагов», которых до изобретения пенициллина не существовало, и теперь человечество вынуждено постоянно искать новые формулы антибактериальных средств.

Выводы и перспективы

Получается, что открытие Флеминга было ненужным и даже опасным? Конечно же, нет, поскольку к таким результатам привело исключительно бездумное и бесконтрольное использование полученного «оружия» против инфекций. Тот, кто изобрел пенициллин, ещё в начале 20 века вывел три основных правила безопасного применения антибактериальных средств:

  • выявление конкретного возбудителя и использование соответствующего препарата;
  • достаточная для гибели возбудителя дозировка;
  • полный и непрерывный курс лечения.


К сожалению, люди редко следуют этой схеме. Именно самолечение и небрежность стали причиной появления бесчисленных штаммов болезнетворных микроорганизмов и трудно поддающихся антибактериальной терапии инфекций. Само же открытие пенициллина Александром Флемингом – это великое благо для человечества, которому всё ещё нужно учиться использовать его рационально.

Введение ………………………….………………………………………….3

    1. История антибиотиков……………………………………………… …....4
    2. Общая характеристика антибиотиков……………………………………13

Заключение………………………………………………… …………………23

Список литературы

Введение

Антибиотики – это все лекарственные препараты, подавляющие жизнедеятельность возбудителей инфекционных заболеваний, таких как грибки, бактерии и простейшие.

Когда впервые были созданы антибиотики, их считали " волшебными пулями", которые должны были радикально изменить лечение инфекционных заболеваний. Однако сейчас эксперты с беспокойством отмечают, что золотой век антибиотиков закончился.

Антибиотики занимают особое место в современной медицине. Они являются объектом изучения различных биологических и химических дисциплин. Наука об антибиотиках развивается бурно. Если это развитие началось с микробиологии, то теперь проблему изучают не только микробиологи, но и фармакологи, биохимики, химики, радиобиологи, врачи всех специальностей.

За последние 35 лет открыто около ста антибиотиков с различным спектром действия, однако, в клинике применяется ограниченное число препаратов. Это объясняется главным образом тем, что большинство антибиотиков не удовлетворяют требованиям практической медицины.

Изучение строения антибиотиков позволило подойти к раскрытию механизма их действия, особенно благодаря огромным успехам в области молекулярной биологии.

Цель работы: изучить историю антибиотиков.

Задачи: 1) ознакомиться с историей появления антибиотиков.

2) рассмотреть общую характеристику антибиотиков.

    I) История появления антибиотиков

Идея использования микробов против микробов и наблюдения о микробном антагонизме относятся к временам Луи Пастера и И.И. Мечникова. В частности, Мечников писал, что «в процессе борьбы друг с другом микробы вырабатывают специфические вещества как орудия защиты и нападения». А чем иным, как не орудием нападения одних микробов на другие, оказались антибиотики? Современные антибиотики – пенициллин, стрептомицин и др. – получены как продукт жизнедеятельности различных – бактерий, плесеней и актиномицетов. Именно эти вещества действуют губительно, либо задерживают рост и размножение болезнетворных микробов.
Еще в конце XIX в. профессор В.А. Манассеин описал противомикробное действие зеленой плесени пенициллиум, а А.Г. Полотебнов с успехом применял зеленую плесень для лечения гнойных ран и сифилитических язв. Кстати, известно, что индейцы майя использовали зеленую плесень для лечения ран. При гнойных заболеваниях рекомендовал плесень и выдающийся арабский врач Абу Али Ибн Сина (Авиценна).
Эра антибиотиков в современном значении этого слова началась с замечательного открытия – пенициллина Александром Флемингом. В 1929 г. английский ученый Александр Флеминг опубликовал статью, принесшую ему всемирную известность: он сообщил о новом, выделенном из колоний плесени, веществе, которое он назвал пенициллином. С этого момента и начинается «биография» антибиотиков, которые по праву считаются «лекарством века». В статье указывалось на высокую чувствительность к пенициллину стафилококков, стрептококков, пневмококков. В меньшей степени к пенициллину были чувствительны возбудитель сибиреязвенной болезни и бацилла дифтерии, а совсем не восприимчивы – бацилла брюшного тифа, холерный вибрион и другие. Однако А. Флеминг не сообщил о виде плесени, из которой он выделил пенициллин. Уточнение сделал известный миколог Шарль Вестлинг.
Но этот пенициллин, открытый Флемингом, имел ряд недостатков. В жидком состоянии он быстро терял свою активность. Из– за слабой концентрации его приходилось вводить в больших количествах, что было очень болезненно. Пенициллин Флеминга содержал в себе также много побочных и далеко не безразличных белковых веществ, попавших из бульона, на котором выращивалась плесень пенициллиум. В результате всего этого использование пенициллина для лечения больных затормозилось на несколько лет. Только в 1939 г. врачи медицинской школы Оксфордского университета приступили к изучению возможности лечения пенициллином инфекционных заболеваний. Г. Флори, Б. Хаийн, Б. Чейн и другие специалисты составили план подробного клинического испытания пенициллина. Вспоминая этот период работы, профессор Флори писал: «Все мы работали над пенициллином с утра до вечера. Засыпали с мыслью о пенициллине, и единственным нашим желанием было разгадать его тайну». Эта напряженная работа принесла свои результаты. Летом 1940 года первые белые мыши, экспериментально зараженные стрептококками в лабораториях Оксфордского университета, были спасены от смерти благодаря пенициллину. Полученные результаты помогли клиницистам проверить пенициллин на людях. 12 февраля 1941 года Э. Абразам ввел новый препарат безнадежным больным, погибающим от заражения крови. К сожалению, после нескольких дней улучшения больные все же скончались. Однако трагическая развязка наступила не в результате применения пенициллина, а из–за его отсутствия в нужном количестве. С конца 30–х. гг. XX века работами Н.А. Красильникова, изучавшего распространение в природе актиномицетов, и последующими работами З.В. Ермольевой, Г.Ф. Гаузе и других ученых, исследовавших антибактериальные свойства почвенных микроорганизмов, было положено начало развитию производства антибиотиков. Отечественный препарат пенициллин был получен в 1942 году в лаборатории З.В. Ермольевой. В годы Великой Отечественной войны тысячи раненых и больных были спасены.
Победное шествие пенициллина и его признание во всем мире открыло новую эру в медицине – эру антибиотиков. Открытие пенициллина стимулировало поиски и выделение новых активных антибиотиков. Так, в 1942 году был открыт грамицидин (Г.Ф. Гаузе и др.). В конце 1944 года С. Ваксман со своим коллективом проводит экспериментальную проверку стрептомицина, который вскоре стал соперничать с пенициллином. Стрептомицин оказался высокоэффективным препаратом для лечения туберкулеза. Этим объясняется мощное развитие промышленности, выпускающий данный антибиотик. С. Ваксман впервые ввел термин «антибиотик», подразумевая под этим химическое вещество, образуемое микроорганизмами, обладающее способностью подавлять рост или даже разрушать бактерии и другие микроорганизмы. В дальнейшем это определение расширялось. В 1947 году был открыт и выдержал экзамен на эффективность еще один антибиотик пенициллинового ряда – хлоромицетин. Его успешно применяли в борьбе с брюшным тифом, пневмонией, лихорадкой Ку. В 1948–1950 гг. были введены ауромицин и терамицин, клиническое использование которых началось в 1952 году. Они оказались активны при многих инфекциях, включая бруцеллез, туляремию. В 1949 году был открыт неомицин – антибиотик с широким аспектом действия. В 1952 году был открыт эритомицин. Таким образом, ежегодно арсенал антибиотиков увеличивался. Появились стрептомицин, биомицин, альбомицин, левомицетин, синтомицин, тетрациклин, террамицин, эритромицин, колимицин, мицерин, иманин, экмолин и ряд других. Одни из них обладают направленным действием на определенные микробы или их группы, другие обладают более широким спектром антимикробного действия на различные микроорганизмы.
Выделяются сотни тысяч культур микроорганизмов, получаются десятки тысяч препаратов. Однако все они требуют тщательного изучения.
В истории создания антибиотиков много непредвиденных и даже трагических случаев. Даже открытие пенициллина сопровождалось, помимо успехов, и некоторыми разочарованиями. Так, вскоре была обнаружена пенициллиназа – вещество, способное нейтрализовать пенициллин. Это объясняло, почему многие бактерии невосприимчивы к пенициллину (колибацилла и микроб брюшного тифа, например, содержат в своей структуре пенициллиназу). Вслед за этим последовали и другие наблюдения, поколебавшие веру во всепобеждающую силу пенициллина. Было установлено, что определенные микробы приобретают со временем невосприимчивость к пенициллину. Накопленные факты подтвердили мнение о существовании двух видов невосприимчивости к антибиотикам: естественной (структурной) и приобретенной. Стало известно также, что ряд микробов обладает способностью вырабатывать такого же характера защитные вещества и против стрептомицина – фермент стрептомициназу. За этим, казалось бы, должен был последовать вывод о том, что пенициллин и стрептомицин становятся малоэффективными лечебными средствами и что их применять не следует. Как ни важны оказались выявленные факты, как ни грозны они были для антибиотиков, но ученые таких поспешных выводов не сделали. Наоборот, были сделаны два важных вывода: первый – искать пути и методы подавления этих защитных свойств микробов, а второй – еще глубже изучать это свойство самозащиты. Помимо ферментов, некоторые микробы защищаются витаминами и аминокислотами.
Большим недостатком длительного лечения пенициллином и другими антибиотиками было нарушение физиологического равновесия между микро– и макроорганизмом. Антибиотик не выбирает, не делает разницы, но подавляет или убивает любой организм, попадающий в сферу его деятельности. В результате уничтожаются, например, микробы, содействующие пищеварению, защищающие слизистые оболочки; в результате человек начинает страдать от микроскопических грибков. При использовании антибиотиков нужна большая осторожность. Необходимо соблюдать точные дозировки. После испытания каждого антибиотика его направляют в Комитет по антибиотикам, который решает вопрос о возможности применения его на практике.
Продолжают создаваться и совершенствоваться антибиотики, обладающие продленным действием в организме. Другим направлением в совершенствовании антибиотиков является создание таких форм антибиотиков, чтобы вводить их не шприцем, а принимать парентерально. Были созданы таблетки феноксиметилпенициллина, которые и предназначены для приема внутрь. Новый препарат успешно прошел экспериментальные и клинические испытания. Он обладает рядом очень ценных качеств, из которых наиболее важным является то, что он не боится соляной кислоты желудочного сока. Именно это обеспечивает успех его изготовления и применения. Растворяясь и всасываясь в кровь, он оказывает свое лечебное действие. Успех с таблетками феноксиметилпенициллина оправдал надежды ученых. Арсенал антибиотиков в таблетках пополнился рядом других, обладающих широким спектром действия на различных микробов. Большой известностью в настоящее время пользуются тетрациклин, террамицин, биомицин. Внутрь вводятся левомицетин, синтомицин и другие антибиотики. Так был получен полусинтетический препарат ампициллин, задерживающий рост не только стафилококков, но и микробов, вызывающих брюшной тиф, паратиф, дизентерию. Все это оказалось новым и большим событием в учении об антибиотиках. Обычные пенициллины на тифозно–паратифозно– дизентерийную группу не действуют. Теперь открываются новые перспективы для более широкого применения пенициллина на практике.
Большим и важным событием в науке явилось также получение новых препаратов стрептомицина – пасомицина и стрептосалюзида для лечения туберкулеза. Оказывается, этот антибиотик может потерять свою силу в отношении туберкулезных палочек, которые приобрели устойчивость к нему. Несомненным достижением явилось создание во Всесоюзном научно–исследовательском институте антибиотиков дибиомицина. Он оказался эффективным для лечения трахомы. Большую роль в этом открытии играли исследования З.В. Ермольевой. Наука движется вперед, и поиски антибиотиков против вирусных болезней остаются одной из актуальнейших задач науки. В 1957 г. английский ученый Айзеке сообщил о получении им вещества, которое он назвал интерфероном. Это вещество образуется в клетках организма в результате проникновения в них вирусов. Проведено изучение лечебных свойств интерферона. Опыты показали, что наиболее чувствительны к его действию вирусы гриппа, энцефалита, полиомиелита, оспо–вакцины. При этом он абсолютно безвреден для организма. Были созданы жидкие антибиотики в виде суспензий. Эта жидкая форма антибиотиков благодаря своим высокоактивным лечебным свойствам, а также приятному запаху и сладкому вкусу нашла широкое применение в педиатрии при лечении различных болезней. Они настолько удобны для применения, что в виде капель их дают даже новорожденным детям. В эпоху антибиотиков онкологи не могли не задуматься над возможностью использовать их при лечении рака. Не найдутся ли среди микробов продуценты противораковых антибиотиков? Эта задача гораздо более сложная и трудная, чем изыскание противомикробных антибиотиков, но она увлекает и волнует ученых. Большой интерес онкологов вызвали антибиотики, которые вырабатываются лучистыми грибами – актиномицетами. Можно назвать ряд антибиотиков, которые тщательно изучаются в эксперименте на животных, а отдельные – для лечения раковой болезни у людей. Актиномицин, актиноксантин, плюрамицин, саркомицин, ауратин – с этими антибиотиками связана важная полоса в поисках активных, но безвредных препаратов. К сожалению, многие из полученных противораковых антибиотиков этому требованию не отвечают.
Впереди – надежды на успех. Ярко и образно об этих надеждах сказала Зинаида Виссарионовна Ермольева: «Мы мечтаем победить и рак. Когда–то несбыточной казалась мечта о покорении космического пространства, но она сбылась. Сбудутся и эти мечты!» Итак, наиболее эффективными антибиотиками оказались те из них, которые являются продуктами жизнедеятельности актиномицетов, плесеней, бактерий и других микроорганизмов. Поиски новых микробов – продуцентов антибиотиков – продолжаются широким фронтом во всем мире. Еще в 1909 г. профессор Павел Николаевич Лащенков открыл замечательное свойство свежего белка куриных яиц убивать многих микробов. В процессе гибели происходило растворение (лизис) их. В 1922 г. это интересное биологическое явление глубоко изучил английский ученый Александр Флеминг и назвал вещество, растворяющее микробов, лизоцим. У нас в стране лизоцим был широко изучен З.В. Ермольевой с сотрудниками. Открытие лизоцима вызвало большой интерес у биологов, микробиологов, фармакологов и врачей–лечебников разных специальностей. Экспериментаторов интересовали природа, химический состав, особенности действия лизоцима на микробов. Особенно важным был вопрос о том, на какие болезнетворные микробы лизоцим действует и при каких инфекционных болезнях можно его применять с лечебной целью. Лизоцим в разной концентрации обнаружен в слезах, слюне, мокроте, селезенке, почках, печени, коже, слизистых оболочках кишок и других органах человека и животных. Кроме того, лизоцим обнаружен в различных овощах и фруктах (хрен, репа, редька, капуста) и даже в цветах (примула). Лизоцим обнаружен также и у различных микробов.
Лизоцим применяется для лечения при некоторых инфекционных заболеваниях глаз, носа, полости рта и др. Широкая популярность антибиотиков привела к тому, что они нередко стали чем–то вроде средства «домашнего лечения» и применяются без назначения врача. Конечно, такое применение нередко опасно и приводит к нежелательным реакциям и осложнениям. Неосторожное применение больших доз антибиотиков может вызвать более сильные реакции и осложнения. Не надо забывать, что антибиотики могут повреждать микробные клетки, в результате чего в организм поступают ядовитые продукты распада микробов, вызывающие отравление. Часто страдают при этом сердечно–сосудистая и нервная системы, нарушается нормальная деятельность почек, печени. Антибиотики обладают мощным действием на многие микробы, но, конечно, не на все. Антибиотиков универсального действия пока нет. Ученые стремятся к получению антибиотиков так называемого широкого спектра действия. Это значит, что такие антибиотики должны действовать на большое количество различных микробов, и такие антибиотики созданы. К их числу относятся стрептомицин, тетрациклин, хлорамфеникол и др. Но именно потому, что они вызывают гибель массы разнообразных микробов (но не всех), оставшиеся становятся агрессивными и могут причинить вред. В то же время за ними большое будущее. В настоящее время антибиотики стали применяться и для лечения животных и птиц. Так многие инфекционные заболевания птиц благодаря антибиотикам перестали быть бичом в птицеводстве. В животноводстве и птицеводстве антибиотики стали применяться как стимуляторы роста. В сочетании с некоторыми витаминами, прибавленными к корму цыплят, индюшат, поросят и других животных, антибиотики способствуют усилению роста и увеличению их веса. Ученые с полным основанием могут утверждать, что, помимо стимуляции роста, антибиотики окажут и профилактическое действие в отношении заболеваний птиц. Известны работы З.В. Ермольевой и ее сотрудников, отражающие тот факт, что среди птиц, телят и поросят заболеваемость и смертность, например от кишечных инфекций (поносов), резко были снижены при применении антибиотиков.
Будем надеяться, что за антибиотиками будет победа и над другими заболеваниями.

    II. Общая характеристика антибиотиков

Антибиотики (от анти... и греч. bĺоs - жизнь), вещества биологического происхождения, синтезируемые микроорганизмами и подавляющие рост бактерий и других микробов, а также вирусов и клеток. Многие антибиотики способны убивать микробов. Иногда к антибиотикам относят также антибактериальные вещества, извлекаемые из растительных и животных тканей. Каждый антибиотик характеризуется специфическим избирательным действием только на определённые виды микробов. В связи с этим различают антибиотики с широким и узким спектром действия. Первые подавляют разнообразных микробов [например, тетрациклин действует как на окрашивающихся по методу Грама (грамположительных), так и на неокрашивающихся (грамотрицательных) бактерий, а также на риккетсий]; вторые - лишь микробов какой-либо одной группы (например, эритромицин и олеандомицин подавляют лишь грамположительные бактерии). В связи с избирательным характером действия некоторые антибиотики способны подавлять жизнедеятельность болезнетворных микроорганизмов в концентрациях, не повреждающих клеток организма хозяина, и поэтому их применяют для лечения различных инфекционных заболеваний человека, животных и растений. Микроорганизмы, образующие антибиотики, являются антагонистами окружающих их микробов-конкурентов, принадлежащих к другим видам, и при помощи антибиотика подавляют их рост. Мысль об использовании явления антагонизма микробов для подавления болезнетворных бактерий принадлежит И. И. Мечникову , который предложил употреблять молочнокислые бактерии, обитающие в простокваше, для подавления вредных гнилостных бактерий, находящихся в кишечнике человека. Описано около 2000 различных антибиотиков из культур микроорганизмов, но лишь немногие из них (около 40) могут служить лечебными препаратами, остальные по тем или иным причинам не обладают химиотерапевтическим действием.

Антибиотики можно классифицировать по их происхождению (из грибов, бактерий, актиномицетов и др.), химической природе или по механизму действия.

Антибиотики из грибов. Важнейшее значение имеют антибиотики группы пенициллина , образуемые многими расами Penicillium notatum, P. chrysogenum и другими видами плесневых грибов. Пенициллин подавляет рост стафилококков в разведении 1 на 80 млн. и малотоксичен для человека и животных. Он разрушается энзимом пенициллиназой, образуемой некоторыми бактериями. Из молекулы пенициллина было получено её "ядро" (6-аминопенициллановая кислота), к которому затем химически присоединили различные радикалы. Так, были созданы новые "полусинтетические" пенициллины (метициллин, ампициллин и др.), не разрушаемые ценициллиназой и подавляющие некоторые штаммы бактерий, устойчивые к природному пенициллину. Другой антибиотик - цефалоспорин С - образуется грибом Cephalosporium. Он обладает близким к пенициллину химическим строением, но имеет несколько более широкий спектр действия и подавляет жизнедеятельность не только грамположительных, но и некоторых грамотрицательных бактерий. Из "ядра" молекулы цефалоспорина (7-аминоцефалоспорановая кислота) были получены его полусинтетические производные (например, цефалоридин), которые нашли применение в медицинской практике. Антибиотик гризеофульвин был выделен из культур Penicillium griseofulvum и других плесеней. Он подавляет рост патогенных грибков и широко используется в медицине.

Антибиотик из актиномицетов весьма разнообразны по химической природе, механизму действия и лечебным свойствам. Ещё в 1939 советские микробиологи Н. А. Красильников и А. И. Кореняко описали антибиотик мицетин, образуемый одним из актиномицетов. Первым антибиотиком из актиномицетов, получившим применение в медицине, был стрептомицин , подавляющий наряду с грамположительными бактериями и грамотрицательными палочки туляремии, чумы, дизентерии, брюшного тифа, а также туберкулёзную палочку. Молекула стрептомицина состоит из стрептидина (дигуанидиновое производное мезоинозита), соединённого глюкозидной связью со стрептобиозамином (дисахаридом, содержащим стрентозу и метилглюкозамин). Стрептомицин относится к антибиотикам группы водорастворимых органических оснований, к которой принадлежат также антибиотики аминоглюкозиды (неомицин , мономицин, канамицин и гентамицин), обладающие широким спектром действия. Часто используют в медицинской практике антибиотики группы тетрациклина , например хлортетрациклин (синонимы: ауреомицин, биомицин) и окситетрациклин (синоним: террамицин). Они обладают широким спектром действия и наряду с бактериями подавляют риккетсий (например, возбудителя сыпного тифа). Воздействуя на культуры актиномицетов, продуцентов этих антибиотиков, ионизирующей радиацией или многими химическими агентами, удалось получить мутанты , синтезирующие антибиотики с измененным строением молекулы (например, деметилхлортетрациклин). Антибиотик хлорамфеникол (синоним: левомицетин), обладающий широким спектром действия, в отличие от большинства других антибиотиков, производят в последние годы путём химического синтеза, а не биосинтеза. Другим таким исключением является противотуберкулёзный антибиотик циклосерин, который также можно получать промышленным синтезом. Остальные антибиотики производят биосинтезом. Некоторые из них (например, тетрациклин, пенициллин) могут быть получены в лаборатории химическим синтезом; однако этот путь настолько труден и нерентабелен, что не выдерживает конкуренции с биосинтезом. Значительный интерес представляют антибиотики макролиды (эритромицин, олеандомицин), подавляющие грамположительные бактерии, а также антибиотики полиены (нистатин , амфотерицин, леворин), обладающие противогрибковым действием. Антибиотик из бактерий в химическом отношении более однородны и в подавляющем большинстве случаев относятся к полипептидам . В медицине используют тиротрицин и грамицидин С из Bacillus brevis, бацитрацин из Bac. subtilis и полимиксин из Bacillus polymyxa. Низин, образуемый стрептококками, не применяют в медицине, но употребляют в пищевой промышленности в качестве антисептика, например при изготовлении консервов.

Антибиотические вещества из животных тканей. Наиболее известны среди них: лизоцим, открытый английским учёным Антибиотик Флемингом (1922); это энзим - полипептид сложного строения, который содержится в слезах, слюне, слизи носа, селезёнке, лёгких, яичном белке и др., подавляет рост сапрофитных бактерий, но слабо действует на болезнетворных микробов; интерферон - также полипептид, играющий важную роль в защите организма от вирусных инфекций; образование его в организме можно повысить с помощью специальных веществ, называемых интерфероногенами.

Антибиотики могут быть классифицированы не только по происхождению, но и разделены на ряд групп на основе химического строения их молекул. Такая классификация была предложена советскими учёными М. М. Шемякиным и А. С. Хохловым: антибиотики ациклического строения (полиены нистатин и леворин); алициклического строения; антибиотики ароматического строения; антибиотики - хиноны; антибиотики - кислородсодержащие гетероциклические соединения (гризеофульвин); антибиотики - макролиды (эритромицин, олеандомицин); антибиотики - азотсодержащие гетероциклические соединения (пенициллин); антибиотики - полипептиды или белки; антибиотики - депсипептиды.

Третья возможная классификация основана на различиях в молекулярных механизмах действия антибиотиков. Например, пенициллин и цефалоспорин избирательно подавляют образование клеточной стенки у бактерий. Ряд антибиотиков избирательно поражает на разных этапах биосинтез белка в бактериальной клетке; тетрациклины нарушают прикрепление транспортной рибонуклеиновой кислоты (РНК) к рибосомам бактерий; макролид эритромицин, как и линкомицин, выключает передвижение рибосомы по нити информационной РНК; хлорамфеникол повреждает функцию рибосомы на уровне фермента пептидилтранслоказы; стрептомицин и аминоглюкозидные антибиотики (неомицин, канамицин, мономицин и гентамицин) искажают "считывание" генетического кода на рибосомах бактерий. Другая группа антибиотиков избирательно поражает биосинтез нуклеиновых кислот в клетках также на различных этапах: актиномицин и оливомицин, вступая в связь с матрицей дезоксирибонуклеиновой кислоты (ДНК), выключают синтез информационной РНК; брунеомицин и митомицин реагируют с ДНК по типу алкилирующих соединений, а рубомицин - путём интеркаляции. Наконец, некоторые антибиотики избирательно поражают биоэнергетические процессы: грамицидин С, например, выключает окислительное фосфорилирование.

Основные группы антибиотиков

Пенициллины включает следующие лекарства: амоксициллин, ампициллин, ампициллин с сульбактамом, бензилпенициллин, клоксациллин, коамоксиклав (амоксициллин с клавулановой кислотой), флуклоксациллин, метициллин, оксациллин, феноксиметилпенициллин.

Цефалоспорины: цефаклор, цефадроксил, цефиксим, цефоперазон, цефотаксим, цефокситин, цефпиром, цефсулодин, цефтазидим, цефтизоксим, цефтриаксон, цефуроксим, цефалексин, цефалотин, цефамандол, цефазолин, цефрадин.

Пенициллины и цефалоспорины - вместе с антибиотиками монобактамом и карбапенемом - вместе известны как антибиотики бета-лактамы. Другие антибиотики бета-лактамы включают: азтреонам, имипенем (который обычно применяют в комбинации с циластатином).

Аминогликозиды: амикацин, гентамицин, канамицин, неомицин, нетилмицин, стрептомицин, тобрамицин.

Макролиды: азитромицин, кларитромицин, эритромицин, йозамицин, рокситромицин.

Линкозамиды: клиндамицин, линкомицин.

Тетрациклины: доксициклин, миноциклин, окситетрациклин, тетрациклин.

Хинолоны: налидиксовая кислота, ципрофлоксацин, эноксацин, флероксацин, норфлоксацин, офлоксацин, пефлоксацин, темафлоксацин (изъят в 1992г.).

Другие: хлорамфеникол, котримоксазол (триметоприм и сульфаметоксазол), мупироцин, тейкопланин, ванкомицин.

Существует несколько лекарственных форм антибиотиков: таблетки, сироп, растворы, свечи, капли, аэрозоли, мази и линименты. Каждая лекарственная форма имеет достоинства и недостатки.

Таблетки Недостатки

Достоинства

1. Безболезненно. Не требуется усилий (не сложно)

Сиропы Недостатки

1. Зависимость от моторики желудочно- кишечного тракта

2. Проблема точности дозировки

Достоинства

1. Удобны в применении в детской практике

Растворы Недостатки

1. Болезненно

2. Техническая сложность

Достоинства

1. Можно создать депо аппарата (под кожу)

2. 100% биодоступность (вводится внутривенно)

3. Быстрое создание максимальной концентрации в крови.

Свечи и капли Недостатки

Достоинства

Аэрозоли Недостатки

1. Не все антибиотики можно превратить в аэрозоль

Достоинства

1. Быстрое всасывание

Мази, линименты Недостатки

1. Применяются для местного лечения

Достоинства

1. Можно избежать системного воздействия на организм